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Welcome

Thank you for purchasing the MEAP for Digital Twins in
Action.

Digital twins have been a hot topic for several years now
and there is a lot of excitement, interest, and opportunity in
the field. A lot of this is because the technology that
enables you to build a digital twin has become accessible to
just about anyone now, opening up endless possibilities for
innovation.

Despite all the buzz, there’s surprisingly little practical
guidance available. Google "digital twins" and you’ll find
countless glossy brochures, white papers, and marketing
materials filled with futuristic 3D renderings but often
lacking real substance. When you try to go deeper, you
quickly discover there’s no comprehensive, practical guide
explaining what a digital twin actually is and, more
importantly, how you can build one yourself. This gap isn't
surprising. Unlike well-established technologies like the Java
programming language or relational databases which have
dozens of excellent books dedicated to them, a digital twin
isn’t a single technology but rather a system integrating
multiple advanced disciplines: the Internet of Things,
computer graphics, databases, artificial intelligence, and
machine learning, each complex enough to warrant its own
book.

I'll admit it’s a bit of a cliche, but I've genuinely tried to
create the book I wish I'd had when starting my digital twin
journey. You’ll explore all the essential topics for building a
digital representation of a physical system—from creating a
simple sensor to measure real-world changes, all the way



through programming an Al agent to make autonomous
decisions. I'll provide practical examples throughout and
take you along as I build a digital twin of my own home.

While you’ll need some familiarity with Python to follow the
practical examples, and TypeScript for the frontend
components, I believe you’ll gain valuable insights even if
you choose not to follow every line of code! I primarily use
AWS for cloud services, but I'll explore other providers
whenever they offer compelling alternatives.

Your feedback is crucial to making this the best book
possible, and I encourage you to share your thoughts in the
liveBook Discussion Forum. I'm genuinely excited to hear
your perspectives and answer any questions as we build
this resource together.

Thanks again for your interest and trust in purchasing the
MEAP!

-Greg Biegel


https://livebook.manning.com/forum?product=biegel&page=1
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1 Bridging the physical and
digital worlds

This chapter covers

Defining what a digital twin is

Different levels of digital twin maturity

What digital twins are good for

How digital twins are used across industries
Considerations when embarking on building a digital twin

Digital twins are virtual models of physical systems that
continuously synchronize with real-world data to monitor
current conditions and predict future behavior. NASA
pioneered this approach decades ago with simulators for the
Apollo program. Yet for years, digital twins remained
accessible only to large, well-funded organizations that could
afford the scarce, expensive sensors, computing capacity,
and advanced analytics required to build them. That'’s all
changed.

Today, digital twins can be built by almost anybody, with an
array of low-cost sensors, high-performance, pay-as-you-go
computing, and powerful artificial intelligence and machine

learning tools widely available.

Some think of digital twins as detailed 3D models. while
others see them as glorified dashboards or traditional
simulation systems. In this book, we define a digital twin as
a system that combines elements from all these
interpretations, but is not restricted to any single
technology.



What exactly counts as a digital twin? Let’s start with a clear
definition before exploring why they’ve become so popular.

1.1 What is a digital twin?

In his 1991 book Mirror Worlds, computer scientist David
Gelertner imagines building a physical model of a city on
your living room floor containing miniature models of
buildings and cars, combined with blackboards radiating
information related to other things people care about, like
the city budget, the air quality, and the waiting time in the
emergency room. An army of people would gather data in
the city and pass it back to your living room to update this
model, allowing you to see, at a glance from your sofa, what
is going on throughout the city and use this to influence your
own decisions. He then imagines this model living in
software, allowing countless people to observe the city
simultaneously, each at their preferred level of detail.

Around the same time, Michael Grieves was developing
similar concepts in the manufacturing world. In 2002, while
teaching at the University of Michigan, Grieves presented
what he called the "Mirrored Spaces Model" and later the
"Information Mirroring Model"—a framework for creating
virtual representations of physical products throughout their
lifecycle. His work laid the groundwork for what would
eventually be called digital twins in industrial settings.

What Gelertner and Grieves envisioned has become reality
with the emergence of digital twins. The term has been used
in many contexts since then and can be defined in different
ways, but for this book, a digital twin is defined as:



A digital representation of a physical system that is
updated with real-world data. It helps users understand
current conditions, monitor performance, and simulate
scenarios to make better decisions based on clearly
defined objectives. Digital twins can also act on the
physical system, sending instructions to adjust or
optimize its behavior.

This definition emphasizes that digital twins should not be
built merely because the technology is available, but should
serve specific business, operational, or research goals. By
providing a computer-based model that mirrors something
physical in reality, they help users to comprehend both the
state of the object or system, and its structure—how
components are organized and connected. By remaining
synchronized through continuously receiving updates about
current conditions, digital twins allow users to track the
behavior of the physical system while also predicting the
effect of changes without changing the real system.

For most of human history, you had to be physically present
to understand how something worked. Digital twins have
changed that, and today, countless people can
simultaneously monitor, analyze, and run simulations on the
same physical system from opposite sides of the globe.

1.2 Technology enabling digital twins

Digital twins first gained traction in capital-intensive
industries like manufacturing, utilities, and energy. These
industries require massive investments, often operate in
remote or hazardous environments, and face strict safety
and regulatory requirements. Since equipment costs are
high, even small improvements in efficiency or reductions in
downtime quickly justify technology investments.



While these industries have used operational technology
(OT) systems like programmable logic controllers (PLC) and
supervisory control and data acquisition (SCADA) for
monitoring and control since the 1960s, digital twins
represent a major leap forward. By integrating IoT sensors,
cloud computing, and AI/ML, modern digital twins can
process vast amounts of data, run sophisticated predictive
models, and provide actionable insights that traditional
control systems alone could never deliver.

The convergence of these technologies enables three key
capabilities: virtual modeling during design to reduce
physical prototyping, predictive maintenance to prevent
expensive failures, and real-time optimization to maximize
operational efficiency.

Consider a wind farm where engineers first use the digital
twin to virtually test turbine designs under simulated
conditions. Once deployed, IoT sensors stream data to the
cloud where Al algorithms detect early signs of bearing
wear. The digital twin then simulates maintenance scenarios
and schedules repairs, while simultaneously adjusting blade
pitch across the farm to maximize energy capture based on
real-time weather patterns.

1.2.1 Internet of things (IoT)

Not too long ago, measuring things such as temperature,
vibration, location, or air quality required bulky and
expensive equipment. The affordable and compact sensors
available today enable users to capture detailed data about
virtually any physical environment or system, opening
unprecedented possibilities for monitoring and control.
Hobbyists can now build sophisticated home automation
systems that measure everything from air quality to energy
usage, while startups can deploy sensor networks to monitor



equipment performance or environmental conditions at a
fraction of historical costs.

NOTE

The DHT22 sensor that I use to measure temperature and
humidity in my home costs around $5 today. Three
decades ago, comparable digital measurement required
industrial sensors and data acquisition systems costing
thousands of dollars, accessible only to well-funded
organizations.

Large enterprises leverage these same technologies to
enable monitoring of manufacturing lines, predictive
maintenance of critical equipment, and optimization of
resource usage. The sensors already embedded in
smartphones demonstrate the power of this technology, with
users able to measure motion, orientation, light levels, and
even perform 3D spatial mapping, turning everyday devices
into powerful data collection tools. Figure 1.1 shows output
from an iPhone’s three-axis accelerometer while the phone is
carried in a pocket. The distinctive pattern in this data allows
us to infer the physical state of the system, namely that the
person carrying it is walking. This democratization of sensing
technology means that anyone can now gather the rich,
continuous data streams necessary to build digital twins that
were once only available to organizations with massive
budgets and specialized expertise.
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Figure 1.1 A screenshot shows the output from a 3-axis accelerometer in
a modern iPhone in the phyphox app ( https://phyphox.org/) showing
data indicating the owner is walking with their phone in their pocket.
Such sensor data enables a digital twin to mirror and interpret real-
world motion and behavior in real time.

Gathering measurements is only half the story; the data
must be sent somewhere useful. Advances in wireless
communications have matched this sensor revolution. Fifth-
generation (5G) cellular networks offer high speeds for high-
bandwidth data. In contrast, Low-Power Wide Area Networks
(LPWANS) like LoRaWAN can transmit over 10 km (compared
to Wi-Fi's 50-100 meters) using 10-20 times less power
than Wi-Fi. This efficiency enables sensors to run for years
on a single battery, making them ideal for small, resource-
constrained devices deployed globally.

IoT is the combination of these widely available commodity
sensors and actuators ("things") embedded into objects and
connected to communications networks. As you move
through the book, you'll learn how to wire up a fleet of
LoRaWAN-based sensors, route their data through a cloud
pipeline, and use it to update a digital twin model in near
real time.

1.2.2 Cloud computing

In the past, deploying a digital twin was restricted to large
industrial players due to the massive upfront investment
required for hardware (data storage, analysis, simulation,
and 3D rendering). Today, modern public cloud computing
provides the essential infrastructure needed to create and
operate sophisticated digital twins without that barrier.

Users can access scalable compute resources on-demand for
complex simulations, elastic storage for continuous sensor
data streams, and managed services for data processing,
analytics, and machine learning. This pay-as-you-go model


https://phyphox.org/

eliminates the traditional constraints of purchasing
expensive servers and specialized software licenses, allowing
rapid prototyping and scaling.

Edge computing complements the cloud by processing data
closer to where it’s generated. For industrial equipment or
remote assets, edge devices perform local analytics,
filtering, and decision-making in milliseconds, reducing
latency for time-critical operations and minimizing bandwidth
costs. For example, a security camera can run a machine
learning model to detect defects or safety violations on a
production line and transmit only the alerts and metadata
rather than streaming hours of raw video footage to the
cloud.

In this book, we will look at how you can use some of the
same cloud services that industrial organizations use today
to help you build a digital twin.

1.2.3 Artificial intelligence (AI) and machine
learning (ML)

The massive datasets from IoT sensors must be filtered,
stored, indexed, and analyzed to generate actionable
insights. Recent advances in AI and ML, partly enabled by
specialized GPU hardware, have shifted these technologies
into widespread use. Combined with IoT and cloud
computing, they are essential for modern digital twins.

AI/ML capabilities are crucial for analyzing continuous sensor
streams and making predictions about future system
behavior. Cloud providers offer user-friendly tools that make
these advanced capabilities accessible. Automated platforms
handle the complex process of building, training, and
deploying models—pre-processing sensor data, selecting



algorithms, and optimizing performance without requiring
deep technical knowledge.

For specific industries, specialized platforms offer pre-built
solutions. When real-time responses are critical or cloud
connectivity is unreliable, edge computing services allow Al
processing to happen locally, enabling immediate decision-
making. These tools collectively lower the barrier for
organizations to add intelligent prediction, anomaly
detection, and automated decision-making capabilities to
their digital twins.

Furthermore, these capabilities are not only in the cloud. We
will look at how you can download pre-trained models for
common tasks such as object-detection, and timeseries
forecasting, that can be customized and run locally, giving
you both control over your data and the ability to operate
when internet connectivity is unavailable.

1.2.4 Agentic AI and autonomous decision-
making

Agentic Al represents a shift toward systems composed of
software agents that autonomously reason, plan, and
execute complex workflows across digital twins. These
agents can monitor systems, learn from data, make
decisions, and perform actions to achieve goals like reducing
costs or optimizing operations, either individually or in
collaboration with other agents.

Digital twins feed agentic Al the data it needs, while the Al
enhances the twin through autonomous optimization and
decision-making.

1.3 What makes a good digital twin?



When you hear "digital twin", you might picture a sleek 3D
visualization of a complex machine. While visualizations are
a common component, they are not the whole story. In fact,
some digital twins operate as headless twins—systems
focused purely on data processing, analytics, and automated
decision-making without any visual component at all.

Digital twins range from simple monitoring dashboards to
complex predictive and autonomous models. It is useful to
categorize them by maturity to help identify the right goal
for your needs and measure the expected business value.
This book follows the five-level maturity model developed by
Verdantix in @ 2019 report titled "Smart Innovators: Digital
Twins For Industrial Facilities", which categorizes digital
twins from basic descriptive systems to advanced
autonomous operations, as shown in figure 1.2.

Autonomous

Comprehensive

Predictive

Informative

Level of
sophistication

Descriptive

Static replica of
system with
infrequent, manual
updates

Integrated with
sensors and other
automated data
streams

Integrates analytics
and near real time
data streams to
identify patterns and
predict outcomes

Integrates advanced
modelling and
simulation to test
possible future
scenarios

Adds the ability for
the digital twin to
make decisions and
take actions
automatically in the
physical system

Digital twin category

Figure 1.2 The five categories of digital twin.

1.3.1 Descriptive digital twin

At the most basic level is the descriptive digital twin. This

A\ 4

twin provides a reasonably static digital representation of a



physical object or system, without making real-time
predictions or responding to changes. This representation
might be a simple engineering diagram or a fully rendered
3D visualization.

REAL WORLD EXAMPLE: ONLINE MAPS

A familiar example of a descriptive digital twin is Google
Maps. What you see when you use this product is a digital
model of real-world cities containing roads, buildings, and
parks and generated from cartographic maps, satellite
imagery and other sources, as shown in figure 1.3.
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Figure 1.3 Google Maps view of lower Manhattan, a familiar example of a
descriptive digital twin. Map data © 2025 Google. Google Maps is a
trademark of Google LLC.

In recent years, Google Maps has evolved from simple two-
dimensional maps to rich, photorealistic 3D renderings of the



built environment, as shown in figure 1.4. These visuals
include buildings modeled through photogrammetry, allowing
users to "fly through" cities from the other side of the world,
almost as if they were there in person. As one of the largest
efforts ever undertaken to capture and represent the
physical environment digitally, it is not only a descriptive
digital twin itself, but also provides an unprecedented digital
foundation for others to build spatially accurate digital twins
on top of.

Figure 1.4 Google Maps view of lower Manhattan showing a
photorealistic 3D view of the built environment provides a more detailed
example of a descriptive digital twin. Imagery © 2025 Google, Map data
© 2025, Map data © 2025 Google.

However, the visual representation is only part of the story.
Behind the scenes, Google Maps relies on a graph-based
model of the road network. Roads are represented as edges
in @ graph, and intersections are nodes, as shown in figure



1.5. This data structure is what enables turn-by-turn
navigation, route optimization, and even traffic prediction. In
other words, the visual part of Google Maps is just the
surface and underneath is a rich digital model of the physical
infrastructure.
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Figure 1.5 A directed graph model of a small subset of lower Manhattan
as represented in Google Maps, with vertices representing intersections
and edges representing roads with direction of travel.

In the context of digital twins, especially descriptive twins,
graph-based models allow us to go beyond what we see and
start structuring the world in a way that supports higher-
level capabilities like simulation, prediction, and real-time
analytics. As you move deeper into digital twin maturity, this
structural backbone becomes increasingly important.



1.3.2 Informative digital twin

An informative digital twin integrates real-time data streams
from the physical system to update the digital
representation. This allows users to visualize the current
state of the system and make better decisions.

In Google Maps, adding traffic data creates an informative
digital twin at a global scale. This traffic data, gathered from
fixed sensors and mobile devices, is rendered by color-
coding streets according to traffic density and speed as
shown in figure 1.6. This pattern of overlaying data layers on
map views is one of the most successful design patterns in
informative digital twin development.
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Figure 1.6 Google Maps view of lower Manhattan with realtime traffic
congestion data overlaid is an example of an informative digital twin.
Imagery © 2025 Google, Map data © 2025, Map data © 2025 Google.



REAL WORLD EXAMPLE: TEMPERATURE MONITORING

Other informative digital twins offer laid-out dashboards with
graphs, gauges, dials, and other components. Figure 1.7
shows one displaying temperature fluctuations over several
days inside and outside a building and how the indoor
temperature is correlated to that outdoors. Behind this
simple visualization lies a network of IoT sensors streaming
data into the cloud that is then contextualized (for example,
linking an individual sensor to a specific room). It is the
combination of data acquisition, processing, storage,
contextualization, and visualization that makes informative
digital twins so valuable.
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Figure 1.7 Information about the physical environment represented in a
dashboard forms the basis of many informative digital twins.

1.3.3 Predictive digital twin

A predictive digital twin forecasts what the state of the
physical system might be in the future and does not only
reflect its current state. It uses historical data to anticipate
future states of a physical system, based on the assumption
that future states and behavior will be consistent with
historical patterns. These predictions can range from simple
rules, like alerting when a temperature reading crosses a
dangerous threshold, to complex machine learning models
trained on months or years of operational data.



Predictive digital twins are particularly valuable in industries
that require extensive and costly maintenance of equipment,
as they can help them move from periodic (replace parts
every 6 months) or reactive (replace parts when the
machine breaks) maintenance to predictive maintenance—
replacing parts when they start to exhibit characteristics that
may indicate failure.

NOTE

Predictive digital twins can transform scheduled or reactive
maintenance into proactive optimization, fundamentally
changing how organizations manage their physical assets
and unlock new value-added services. Companies can now
offer predictive maintenance subscriptions, performance
guarantees, or outcome-based contracts, turning
operational insights into revenue streams.

REAL WORLD EXAMPLE: PREDICTING EQUIPMENT
FAILURE

Imagine an industrial pump equipped with a temperature
sensor. Over time, it starts showing rising temperatures. A
predictive digital twin monitoring this pump might be using a
threshold-based rule (for example, "if the temperature
exceeds 60 degrees Celsius, then trigger a warning") or a
more advanced anomaly detection model trained on patterns
from pumps that previously failed. The trained machine
learning model knows that when the temperature of the
pump has exceeded 60 degrees for more than two hours
previously, this has caused a failure in the bearing. The goal
is to forecast problems before they happen, avoiding costly
breakdowns and unplanned downtime.



REAL WORLD EXAMPLE: PREDICTING TRAVEL TIME

One of the most widely used predictive digital twins is likely
in your pocket right now. Open Google Maps, and it will
estimate how long it'll take to drive anywhere you choose,
not just based on current traffic, but on what traffic is likely
to look like 30 minutes from now, as shown in figure 1.8.

How does it do that?

42 min (11.8 km)

via BC-99 S and Granville St

Best route, despite much heavier traffic than usual

Vancouver
British Columbia, Canada

1 Head north-east on Hornby St towards W
Georgia St/BC-1A/BC-99 N
28 sec (120 m)

>  Follow BC-99 S to Granville St

18 min (8.9 km)

>  Take Arthur Laing Brg to Grant McConachie Wy E

in Richmond

3 min (2.8 km)

Vancouver International Airport

3211 Grant McConachie Wy, Richmond, BC V7B 0A4,

Canada

d <

WEST END

Vancouver
Kitsilano £
Beac (:>
(99

KITSILANO
INT {7 = =MT-PLEASANT
TA
AR-SOUTHLANDS SHAUGHNESSY
VanDu sefl
Botanical ‘:}
Lardep
R-SOUTHLANDS (09
KERRISDALE (8
ON Larnigara College Q}
@
SOUTHLANDS «
(=1
4
SOUTH
VANCOUVER
BRIDGEPORT
Sea Island

BURKEVILLE

Figure 1.8 An example of a predictive digital twin provided by Google
Maps showing predicted travel time. Map data © 2025 Google.

Under the hood, Google uses a Graph Neural Network (GNN)
that operates on the road network, treated as a graph, as
illustrated in figure 1.6. It blends live traffic data with
historical trends to simulate how congestion might evolve.
Google Maps combines a static representation of the physical
road infrastructure with real time positional data and models
trained on historical data to achieve remarkably accurate



travel time predictions. The accuracy of these models
became apparent during the Covid 19 pandemic when
lockdowns shifted traffic patterns overnight, necessitating
Google to urgently retrain them on shorter historical traffic
data to retain their accuracy.

NOTE

Read more about how Google DeepMind partners with
Google Maps to predict traffic patterns with Graph Neural
Networks here https://deepmind.google/blog/traffic-
prediction-with-advanced-graph-neural-networks/.

REAL WORLD EXAMPLE: A DIGITAL TWIN OF YOU

It is not just machinery and infrastructure that can be
modeled in the digital world, but ourselves too. Every time
you browse a streaming service or shop online, you're
providing data about yourself to systems that are essentially
personal predictive digital twins. These systems build and
continuously update a profile of your preferences, beliefs,
habits, and behaviors. Based on this profile, they predict
which item to recommend on Amazon, what music to queue
on Spotify, what search results to return to you in Google, or
what you might want to watch next on Netflix as shown in
figure 1.9.
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Figure 1.9 What Netflix thinks I would like to watch next based on its
representation of my preferences learned through past shows I have
watched.

The proliferation of these human-centric twins makes robust
privacy protocols and clear ethical guidelines essential to
prevent misuse, manipulation, or bias in how our digital
reflections are managed and acted upon.

NOTE

Companies such as Delve.ai (https://delve.ai) market
software that offers to build a so-called digital twin of a
customer (DToC) and a digital twin of an employee (DTOE)
—with the promise of building a digital replica of a person
to make predictions about their performance, behavior,
and potential.

These predictive digital twins are constantly learning—from
your clicks, views, likes, purchases, and even how you move
your mouse over the screen. They're not based on models of
physics and are more focused on patterns in data, but the
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principles are the same: observe the past, understand the
present, and forecast the future.

1.3.4 Comprehensive digital twin

A comprehensive digital twin takes things a step further. It
actively simulates different possible futures in addition to
monitoring a system and making forecasts. This lets us
explore questions like, "What happens if we tweak this
parameter?", "What if we push the system beyond its normal
limits?" The goal is to understand how a physical system
might behave under various conditions, even if we never
touch the real thing.

MODELING MEETS REALITY

Simulation and modeling of complex systems isn’t new.
Engineers and scientists have been doing this for decades,
using mathematical models to represent everything from
electrical grids to climate systems. Comprehensive digital
twins extend traditional modeling by dynamically integrating
real-world data, often through techniques such as state
estimation or data assimilation. Data assimilation is the
process of combining real-world observations with
mathematical models to create the most accurate possible
representation of a system’s current state.

NOTE

Data assimilation is like giving your model a regular dose
of reality. It compares what the model thinks should
happen with what actually happened, then adjusts
accordingly.



This makes the model not just a static representation of the
system that predicts outcomes based on sensor data, but a
living, evolving digital counterpart.

REAL WORLD EXAMPLE: PREDICTING THE WEATHER

Imagine you are planning to go on a hike at the weekend.
You will probably look at your favorite weather app to see
whether rain is in the forecast for the day you plan to go.
Beyond the simple icon of clouds and raindrops lies a
sophisticated chain of models, simulations, and real-world
data—a comprehensive digital twin of the global weather
maintained by institutions like the European Center for
Medium-Range Weather Forecasts (ECMWF). The ECMWF
maintains multiple numerical models of the atmosphere,
known as general circulation models, that it combines with
recent sensor observations from global weather stations and
remote satellite data (using data assimilation) to get the
best possible estimate of the current state of the
atmosphere. The updated model becomes the foundation for
predicting upcoming weather patterns and whether rain is
likely.

The ECMWF is currently implementing an earth-scale digital
twin called Destination Earth (https://destine.ecmwf.int/)
that will provide a planetary-scale digital replica based on
observations and simulations. The first two capabilities
include multi-decade simulations of climate change, and on-
demand simulations of weather-induced extremes, with the
intent being to more accurately predict environmental
disasters and mitigate resultant crises. Example output from
a simulation run within the climate change adaptation digital
twin that is used to inform wind farm design is shown in
figure 1.10.
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Figure 1.10 An example of a comprehensive digital twin—a view of
indicators relevant to wind energy including hourly wind speed
distribution with its changes at the multi decadal scale to help improve
wind farm design generated with the Climate Change Adaptation Digital
Twin, part of Destination Earth. Image © ECMWEF. Licensed under CC BY
4.0.

1.3.5 Autonomous digital twin

An autonomous digital twin extends beyond purely modeling
the physical system and closes the loop between the
physical and digital realms by taking real world actions
based on information, predictions, or simulations in the
digital system. These actions can range from direct physical
actuation—for example, opening a pressure release valve
when tank pressure is predicted to exceed safe limits—to
electronic actuation that ultimately results in an action such
as the raising of a notification on a user’s device.


https://creativecommons.org/licenses/by/4.0/

Systems resembling autonomous digital twins have
traditionally been found in industrial processes, but it’s
important to distinguish between different types of
automated systems. Closed-loop process control systems,
such as automated plant control (APC) systems managed by
distributed control systems (DCS), use data from SCADA
systems to control PLCs through pre-programmed rules and
heuristics. They respond to sensor inputs according to fixed
logic and a bounded set of conditions but do not learn,
reason, or adapt their behavior based on new or unforeseen
experiences outside of their defined envelope. Furthermore,
these traditional OT systems typically operate in isolation,
use proprietary protocols, and are focused primarily on real-
time control and maintaining stability within set parameters,
rather than holistic, future-oriented optimization of the
entire asset or enterprise. The autonomous digital twin, in
contrast, integrates agentic Al to reason about multiple,
conflicting objectives, predict future states, and generate
novel control strategies that adapt over time.

REAL WORLD EXAMPLE: MAINTAINING YOUR HOME
TEMPERATURE

You don’t need to walk through an industrial plant to see an
autonomous digital twin in action. In fact, you might already
live with one—and it’s probably hanging on your wall.

Let’s say you've installed a smart thermostat in your home.
When you first turn it on, it behaves like any other
thermostat, where you configure the temperature that you
want, and it turns on the heat or the air conditioning to bring
the temperature as close to that as possible, very much like
a traditional closed loop process control system.

But after running for a few days, things start to change. It
learns that you tend to lower the temperature at around 10



p.m. when you go to bed, and then turn it up again at 7
a.m. when you wake up in the morning. It also reads the
local weather data and starts to form a correlation as to how
the external conditions change your home’s climate. It even
communicates with your mobile phone to determine your
physical location and uses this to infer when you are not at
home. Eventually, it starts to make changes to the
temperature settings on its own as shown in figure 1.11.
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Figure 1.11 The interface to a Nest smart thermostat showing how it
takes action based on your physical location. Eco mode is enabled based
on presence sensing via the location of mobile phones in the household.
Image © Thomas Smailus, Ph.D. P.E. Reproduced with permission.

At this point, your thermostat is more than just a remote
control for your AC system. It’s running a simplified digital
twin of your home’s thermal behavior. It knows how long it
takes to warm up in the morning, how sunlight through your
west-facing windows affects the living room, and when
nobody’s home. It's constantly comparing what should be



happening (according to its model) with what is happening
(from real-time sensors), and it adjusts accordingly, all
without your input.

What makes it an autonomous digital twin is that it's not just
logging data or reacting blindly. It's assimilating sensor data
into its model and acting autonomously to improve comfort
and save energy. You're actually living with a low-key
autonomous digital twin right there in your home.

1.4 What are digital twins good for?

Hopefully, you are starting to form a picture in your mind as
to how you might currently benefit from the digital twins we
have touched on so far, but as someone looking to build and
deploy a digital twin within their business, what are the
potential benefits that they offer? Let’s explore some of
these key advantages.

1.4.1 Accelerating product development

This pre-construction model allows engineers to test and
simulate countless outcomes and "what-if" scenarios in a
risk-free environment. By running simulations, developers
can quickly identify performance limitations, predict specific
failure modes, and refine their designs. This approach alters
the traditional product development cycle, moving away
from expensive, iterative physical prototyping. Instead, it
enables the rapid testing of many design variants at a far
lower cost, allowing physical tests to be focused only on the
most promising designs and predicted critical failure points,
thereby accelerating innovation.

REAL WORLD EXAMPLE: SIEMENS GAS TURBINE
DEVELOPMENT



When Siemens developed the SGT-A65 gas turbine, they
adopted a digital twin known as ATOM (Agent-based Turbine
Operations and Maintenance). ATOM modeled the fleet
operations of Siemens gas turbines, including engine
characteristics, supply chain logistics, maintenance facility
operations, and customer operations. Replacing a set of
Excel-based forecasting tools and representing the entire
system, ATOM reportedly provided enhanced analytical
capabilities and enabled decision making that considered the
entire system of turbine operations.

1.4.2 Reducing costs through predictive
maintenance

There is a good reason that digital twins are often found
today in industries that operate complex machinery. In such
operations, the failure of a machine that runs continuously
can have major consequences financially and
environmentally, in terms of health and safety, or regulatory
repercussions. Being able to gain the insight that a machine
is starting to show anomalous behavior allows the operator
to examine and repair it before it fails, thereby minimizing
the risk of downtime in an approach known as predictive
maintenance.

REAL WORLD EXAMPLE: ROLLS ROYCE INTELLIGENT
ENGINE

You may have experienced the frustration of a flight delay
where you are stuck in a terminal with no information as to
what has happened and when you may be on your way
again. Unplanned maintenance is one of the leading causes
of flight delays so being able to predict when an engine
might require unscheduled maintenance benefits both
airlines and their customers. Rolls-Royce created a program
known as the "Blue Data Thread" that provides bidirectional



flow of information—a digital representation of the physical
jet engine—between the company and the airlines operating
their engines. These digital twins of aircraft engines, known
as the "Intelligent Engine", are used to predict what
maintenance will be required on which engines at what time,
and ensure that repair capabilities and capacity will match
these requirements. When engines have been sold for many
years under long term maintenance contracts and the cost of
engine maintenance is transferred back to the company,
they are incentivized to optimize this process as much as
possible.

1.4.3 Optimizing performance and operational
efficiency

The increased visibility into the operations of plant and
equipment that having a digital replica brings, together with
the ability to predict and simulate the impact of changes, is
a key factor in being able to improve operations across many
different industries.

REAL WORLD EXAMPLE: THE NOKIA NETWORK
DIGITAL TWIN

Nokia’s Network Digital Twin takes data about the
performance of a communications network, including
latency, throughput, signal strength and signal to noise ratio
from telemetry sent directly from devices on the network
and performs threshold monitoring on this representation of
the state of the network against key performance indicators
(KPIs). In the case of a threshold being breached, such as a
change in topography reducing network coverage, network
planners are alerted so that they can perform actions to
ensure network connectivity is maintained.



1.4.4 Supporting the full infrastructure asset
lifecycle

The preceding advantages coalesce in a single, evolving
digital twin that supports physical infrastructure throughout
its entire lifecycle. The twin starts as a planning and design
tool, allowing engineers to simulate different scenarios, test
performance, and optimize configurations before any
physical work begins. As the asset moves into the
construction phase, the twin transitions into a verification
and tracking system, recording progress, validating
installations against initial designs, and capturing "as-built"
information. Finally, once the asset is operational, the digital
twin becomes a real-time monitoring and optimization
platform, continuously ingesting live sensor data to track
performance, predict future maintenance needs, and enable
adaptive, data-driven management for the rest of its service
life.

REAL WORLD EXAMPLE: CROSS RIVER RAIL PROJECT

The cross river rail project in Brisbane Australia, was a multi
billion dollar infrastructure project designed to remove
bottlenecks in the existing public transport system. The
project mandated a common data environment underpinning
a digital twin, to which all contractors were obliged to
contribute right from the planning stage, through
construction, to operation. The benefits of the resulting
digital twin included early identification of design issues,
reconciliation across multiple major works packages, the
ability to brief stakeholders effectively, and overcoming
environmental issues by being able to travel through as-yet
built environments, first-person and at scale.

1.4.5 Training and simulation



Modern digital twins may provide immersive, virtual reality
environments where teams can participate in active learning
(particularly safe practice in hazardous environments), which
can lead to better learning outcomes at a lower cost. The
original purpose of the lunar and command module
simulators setup by NASA during the Apollo space program
was to provide a replica of the physical system which
astronauts performed extensive training and simulation in.

REAL WORLD EXAMPLE: ANATOMICAL DIGITAL TWIN

Researchers at Curtin University’s medical school in Western
Australia used photogrammetry to produce 3D
reconstructions of human anatomical specimens. These 3D
models, as a digital representation of internal organs,
decrease the need for anatomy students to have access to
costly laboratory facilities with increasingly scarce physical
resources, where they may also be at risk of exposure to
chemicals as they study physical specimens.

1.4.6 Digital twins across industries

modeling the real world in software so that you can observe,
understand, perform experiments, and predict future
outcomes without changing the physical system is valuable
and has advantages that apply to just about any industry
that exists today, but we find digital twins mostly being
applied in some key industries.

MINING, ENERGY AND INDUSTRIAL

Mining, energy production, and steel and metal processing
are all examples of industries that are characterized by
large-scale, capital-intensive operations that use complex
processes to extract and transform raw materials into the



essential components of our modern life. Within these
industries, even small efficiency improvements to complex
workflows and large operational costs can translate to
significant financial, safety, and environmental outcomes.
Digital twins contribute to process optimization in such
industries by combining and contextualizing disparate
process data and enabling the identification of opportunities
to remove bottlenecks and improve throughput. Digital twins
also see extensive use in the training of personnel in these
industries to safely operate in hazardous environments.

AUTOMOTIVE

The automotive industry has been an enthusiastic adopter of
digital twins across many parts of the industry for many
years. Digital twins are used in the product development and
engineering phase to simulate aerodynamic performance,
reducing the need to build physical prototypes for testing. As
the transition to electric vehicles gathers pace, with highly
instrumented and connected vehicles with complex onboard
software, digital twins are increasingly being used to
maintain a digital representation of the state of each vehicle,
as well as changing its state through software updates.

AGRICULTURE

As the United Nations predicts the global population to peak
at around 10.3 billion people around 2080, up from
approximately 8 billion people at the time of writing,
agriculture and food production will need to become more
efficient, improving yields and reducing waste. There are
many ways in which complex agricultural processes can
benefit from the living digital representation that a digital
twin provides. Accurate and up to date data about plant,
animal, and machine health allows farmers to more



efficiently allocate resources. Digital twins of global weather
conditions, such as the Destination Earth digital twin being
developed by the ECMWF, contribute to more accurate
forecasting of weather events that are so important in food
production.

NOTE

The United Nations provides extensive datasets related to
global population here https://population.un.org/wpp/.

INFRASTRUCTURE

Digital twins are being deployed in critical infrastructure
projects, from individual facilities to entire regional
networks. Power systems use digital twins to balance supply
and demand in real-time, integrating data from generation
facilities, transmission lines, and smart meters to prevent
outages. The Netherlands employs a digital twin of its flood
protection infrastructure to simulate storm scenarios and
optimize barrier operations protecting millions of residents
below sea level. Digital twins enable infrastructure operators
to orchestrate entire systems rather than just individual
assets, ensuring the reliability and resilience that modern
society depends upon.

SMART BUILDINGS, CITIES, AND STATES

Digital twins are being used across multiple scales in the
built environment, from individual building systems to entire
cities and states. Within individual buildings, digital twins are
used to optimize energy consumption against the competing
priorities of energy use and occupant comfort by integrating
data from occupancy, weather, and other types of sensors.


https://population.un.org/wpp/

Saudi Arabia, with an ambitious plan to house 9 million
people in a footprint of 34 square kilometers, uses a digital
twin to simulate the operation of lifts within high-rise
buildings to optimize the design and construction process.

1.5 Building your first digital twin: key
considerations and challenges

You might be wondering where you would even start building
a digital twin. Whatever level of digital twin you are
planning, the components of the system are as shown in
figure 1.12.

Collect Conneo t Transpaort Process Store Analyze Aot

Physical Digital

Figure 1.12 High level architecture of a digital twin showing how data
about the real world is collected, stored, and processed to make
decisions and affect outcomes.

This figure illustrates the complete digital twin data flow,
showing how information moves from physical assets
through various collection and processing stages to enable
intelligent decision-making and automated actions. The



numbered elements trace the journey from initial data
capture to final control actions.

1.

Understand the object or system that you plan to build
the twin of, and critically, what specific objectives you
hope to achieve.

. Determine what data you will need to collect to create a

digital model that will support your desired objectives.
Begin with static data sources, including documents and
still images, before connecting sensors, cameras, and
external systems via APIs.

. Connect these data sources to your digital environment

and transport the data into it.

. Process data sources to build a model of the physical

system within the digital environment. This model may
include visual models, mathematical models that define
your system, and a model of entities and their
relationships persisted in a range of data stores.

. Run analytics and simulations over the model.
. Close the loop from the digital environment back into the

physical system via some form of action.

Over the course of this book, we will explore each of these
components in greater detail. We will work through an
example of how you can build a functioning digital twin of
perhaps your most important asset—your home—and see
how building a digital representation can provide value to
you in your everyday life. While a home digital twin might
seem modest compared to industrial applications, the same
architectural patterns, software components, and data flows
apply directly to factories, power plants, and smart cities.

1.5.1 A clear definition of success



Before writing a single line of code or creating any rich
interactive visualizations, you should be able to clearly
articulate what you hope to achieve by building a digital
twin. In early stages, this might mean establishing a
systematic approach to data collection, identifying
relationships between variables, and gaining a clearer
understanding of system behavior. These exploratory
outcomes provide the foundation for defining more specific
targets.

As your digital twin matures, success should be defined
through measurable outcomes that drive behavioral change,
not just numerical outputs. Rather than vague aspirational
priorities like "improving operations" or "reducing cost",
articulate how the digital twin will change decisions and
actions. For example, "reduce the London hotel’s electricity
consumption by 10% within 6 months by enabling facility
managers to optimize HVAC control based on real-time
occupancy data" is a goal that combines quantifiable results
with the behavioral shift that achieves them.

NOTE

Best practice when implementing digital twins is to start
with a small pilot project rather than a full-scale
implementation. This approach allows you to validate your
ideas and gain stakeholder buy-in with minimal risk and
investment upfront.

1.5.2 Data quality

It will come as no surprise that creating an effective digital
representation of a physical object or system depends on
having accurate, complete, and consistent data about the
real world. Yet, although modern organizations are



reportedly drowning in data, poor data quality sabotages
even the most sophisticated digital twins. As Herbert Simon
observed, "a wealth of information creates a dearth of
attention", and this abundance often masks underlying
quality issues that can undermine digital twin effectiveness.

INCOMPLETE AND UNRELIABLE DATA

Unless you are desighing and building your system from
scratch, be it a new building, electric vehicle, or iron ore
mine, you will likely be dealing with aged assets and
infrastructure with varying levels of instrumentation and
information available. Just getting operational data streams
from your OT network into the IT space where your digital
twin will be deployed can be a significant challenge, and the
resulting data is often both incomplete and of questionable
quality.

Data quality issues can arise from sensors drifting out of
calibration over time, connectivity problems that create gaps
in time-series data, and equipment failures introducing noise
and anomalies. The data that is available could use different
measurement standards, communication protocols, and
sampling frequencies, that make it difficult to achieve the
consistency and accuracy that effective digital twins require.
Some of the data may be locked away behind vendor
contracts that do not even give you access to data from your
own equipment.

LACK OF DATA CONTEXT

Any data that you collect about the physical world has
limited value in isolation, without appropriate
contextualization that links it with other related data and
entities. Consider a data stream from an IoT sensor that
measures temperature. Without additional data about what



location or equipment the measurements relate to, it is
impossible to make any decisions based on that data.

NOTE

Data contextualization refers to enriching raw data with
additional relationships and information to characterize its
situation, including relationships to what the data
represents, the location of the data, and the type or
classification.

Many organizations have historically struggled to match and
integrate the multiple disparate data sources that they
maintain. With multiple systems that use different identifiers
for the same physical asset, customer or event, different
terminologies, and different measurement scales, it becomes
very difficult to analyze and derive insights to take action on.

1.5.3 Skills gap

Building or deploying a digital twin requires not only
extensive technical skills across technologies, including
device hardware, networking, software and data
engineering, and data science but also deep knowledge of
the domain and business in which you operate, in order to
understand where a digital twin can bring value to the
business. The importance of this combination of broad
technical and domain expertise is critical to the digital twin
project, delivering on the desired outcomes.

1.5.4 Build vs. buy

As with any new software system, one of the most important
considerations is whether to build a custom system or



purchase an off-the-shelf solution. Some of the pros and
cons of each approach are shown in table 1.1.

Table 1.1 The pros and cons of building your own solution versus buying

off the shelf.

Option

Pros

Cons

Custom build

Ultimate flexibility;
perfect alignment with
unique business
requirements;
ensures complete
data ownership

Requires extensive in-house
technical expertise; takes longer to
implement; demands ongoing
maintenance

Proven product; rapid

Limited to existing features;
requires adapting business
processes to the software; difficult

customization)

for core functions;
allows for critical
customization to
differentiate

Buy off-the- deployment; reduced | { " yicce entiate your business; may
shelf need for in-house . . .
compromise data sovereignty if
development . . X
operational data resides in vendor-
controlled environments
Faster time-to-market
tha_m full custom Dependency on the platform
. . build; leverages i L
Hybrid (build . vendor; customizations can be
existing framework
on PaasS / costly and create upgrade

difficulties; requires a mix of in-
house and vendor expertise

The decision is ultimately a strategic choice based on your
short-term needs versus long-term goals, available technical
expertise, how critical the digital twin will be to your
organization, and your tolerance for external data

dependencies. Given the breadth of technology involved, the
most pragmatic approach is often a hybrid one of buying
standard solutions for commodity components while building




custom components that offer competitive differentiation or
require strict data control.

1.6 Summary

Recent advances in IoT, cloud computing, and AI/ML
have made the technology required to build a digital twin
widely available.

A descriptive digital twin provides a static digital
representation of reality.

An informative digital twin integrates data streams from
the real world, regularly updating the digital
representation.

A predictive digital twin forecasts what the state of the
physical system might be in the future, based on an
understanding of the past.

A comprehensive digital twin simulates possible future
states of the physical system, using data assimilation to
update mathematical models with data from the physical
system.

An autonomous digital twin closes the loop between the
physical and digital realms by taking actions in the
physical world based on analytics, predictions, or
simulations in the digital representation.

Before building a digital twin, you must be clear about
the outcomes you are looking to achieve, what skills you
will need, and whether you intend to build it from
scratch, buy off the shelf capabilities, or a combination
of the two.



2 Mapping physical
systems to a digital
representation

This chapter covers

Deciding what aspects of the physical world to capture
digitally

Choosing information sources to build a digital model
Extracting and digitizing information from these
information sources

Relating objects to each other spatially

Building a digital twin begins with the fundamental questions
of what aspects of your physical world you should represent
digitally, and how accurately you need to represent them.
This decision shapes everything that follows, from the
sensors you deploy and the data you collect, to the models
you build and the insights you can extract. The challenge lies
in translating the rich, multi-dimensional complexity of
physical systems into digital representations that are both
technically feasible and provide business value. Getting this
translation right is important because it determines whether
your digital twin will be a powerful tool for optimization and
prediction, or an expensive collection of data that fails to
deliver meaningful results.

This chapter addresses the first step in any digital twin
implementation—understanding what to digitize and how
you can map the physical world to a digital representation.
The core decisions covered here establish the basis for the



technical implementations that enable effective data
collection and system representation. Without a clear
understanding of what you’'re trying to represent digitally,
even the most sophisticated digital representation of your
physical system will fail to create an effective digital twin.

Before diving into the technical approaches for digital
representation, you must first establish clear objectives that
will guide every subsequent decision about what to digitize,
how to represent it, and which details matter most for your
specific use case.

2.1 Defining your objectives

One of the most common mistakes when building a digital
twin is to start with the technology rather than the
objectives or strategic goals. You may naturally get excited
about creating high fidelity 3D visualizations, or building and
deploying sensors before answering the fundamental
guestion of 'what business problem are we trying to solve?'.
This failure can lead to wastage and digital twins that do not
deliver on the promised value.

The success of any digital twin initiative hinges on clearly
defining your objectives before beginning the complex
process of capturing and modeling physical systems. This
objective-first approach serves as the foundation for all
subsequent technical decisions, resource allocation, and
validation criteria throughout the digital twin lifecycle. By
aligning technical capabilities with business imperatives, you
can avoid the common trap of building sophisticated digital
models that fail to address real operational challenges or
deliver measurable value.

2.1.1 Identify specific challenges and
opportunities



Start by documenting concrete business problems that
impact your operations rather than leading with available
technologies. Imagine a plant superintendent facing 12
hours of unplanned downtime per month from centrifugal
pump bearing failures, costing $15,000 per hour in lost
production, (or $2.16 million annually). Current time-based,
or periodic, maintenance replaces bearings every 6 months,
meaning that:

e 40% of the bearings are replaced while they are still in
good condition, costing $48,000.

e 15% of bearings fail before the scheduled replacement
(causing the downtime).

e When a bearing fails, it can take up to 2 weeks to
procure a new one from suppliers, so spare parts must
be held in inventory.

The opportunity is to switch from planned to predictive
maintenance, servicing equipment based on its actual
health. Identifying potential issues early allows for just-in-
time ordering of spares and maintenance scheduling,
optimizing inventory and labor.

2.1.2 Establish measurable performance
indicators and baselines

To illustrate how digital twins can predict and prevent
unplanned downtime in a manufacturing plant, we can
examine both leading indicators (early warning signals) and
lagging indicators (business impact metrics) that work
together to provide comprehensive operational insight as
shown in table 2.1.



Table 2.1 Leading and
maintenance of centrifugal pumps.

lagging indicators defined for predictive

i;glecator Description Baseline Target
Lead:i FIuctuat'ibonst.in Vibration:
eadin ump vibration ;
(Early g gnd tpemperature £0.5 mm/sz_ FIuctu;tlon alerts at >2.0
warning) | (precursors to Temp: £1°C mm/s< and >3°C weekly
bearing failure) weekly
Reduction in :1(2)urs/month 3 hours/month downtime
Lagging | unplanned downtime (75% reduction, $1.62 million
(Business | downtime and 40 ' saving) 60% reduction in
outcome) | unnecessary unncécessary unnecessary replacements
replacements replacement ($29K saving)

2.1.3 Map decision-making improvements

Next, you should articulate which specific decisions will be
enhanced and how actions taken based on those decisions
will deliver business value. Document current decision-
making processes, identify information gaps, and define how
the digital twin provides better, faster, or more confident
decisions, as shown in table 2.2 for the example of pump
maintenance.



Table 2.2 An example of what current pump maintenance decisions will
be improved and how.

Current decision Improved decision via digital twin

Time-Based: If 6 Predictive: When trends indicate an 80%

months have passed, probability of failure within 4 weeks, order a bearing
replace the bearing and schedule replacement in 3 weeks

Fixed Schedule:
Maintain equipment
based on a rigid
schedule

Risk-Based: Optimize resource allocation by
prioritizing maintenance on equipment with the
highest risk of failure

2.1.4 Define a minimum viable digital
representation

Based on decision-making requirements, determine the
simplest digital representation that enables those improved
decisions. Identify which physical attributes, behaviors, and
relationships are essential and which can be simplified or
omitted. For the pump example, the minimum viable digital
representation requires capturing:

1. Vibration frequency spectrum (to detect bearing wear).

2. Temperature of bearing housings (to detect friction-
induced heat).

3. Pump motor current signature (to detect mechanical
load changes).

4. Operating hours and duty cycles (to understand usage).

This focused approach ensures every aspect of the digital
representation serves a clear business purpose and can be
validated against measurable results. Only after establishing
these foundations should you proceed to capturing and
modeling your physical systems.



2.2 A digital twin of the home

Let’s take the concepts introduced for defining your
objectives, and create a practical worksheet that can be
used to effectively map a physical system to its digital
representation. To illustrate these concepts, consider the
example of creating a digital twin of a home. For someone
like myself, living in one of the driest cities in the world with
moderately high electricity prices, the primary objectives
might be to reduce water and electricity consumption. The
following example works through these objectives based on
the process defined earlier, starting with identifying
opportunities together with the key data needed to enable
better decisions, as shown in table 2.3.



Table 2.3 Start by defining your objectives in terms of the opportunities
for improvement your digital twin will offer and what data is required.

Opportunity Annual Cur_re_nt Better decision | Key data needed
cost decision
More effective RUN Schedule high- | Real-time
use of anpliances power loads electricity usage,
electricity $2,160 wIID'\pen during optimal | solar PV output,
produced by convenient solar appliance
solar PV production scheduling
Reduce Water Irrlga_te based | Soil m0|stu_re
excessive based on a on §0|I sensors, rainfall
$456 : moisture & forecast, and
water usage by fixed o
L2 weather irrigation flow
over-irrigation schedule
forecast rates
Adjust Optimize Indoor/outdoor
More efficient temperature | timing with temperature,
cooling/heating | $1,800 for solar occupancy
decisions immediate production and | detection, HVAC
comfort occupancy energy usage
Mitigate risk of | $50,000 | Only smoke Leak detection Moisture, water
fire & flood potential | detectors flow measurement

These opportunities then lead to defining my metrics for
success. For my home digital twin, these are the modest
metrics listed in table 2.4. These metrics are the lagging
indicators that I will measure to determine if I have met my
objectives. Depending on the scope of your proposed digital
twin, you may have significantly more metrics—the key is to
understand what they are, the baseline measure, and your
proposed target.




Table 2.4 Define measurable performance indicators and your current

baseline.
Metric Current value Target value Timeline
Electricity $300/month peak (10% 12
bill $330/month peak reduction) months
. $100/month $85/month average (15% 12
Water bill average reduction) months

The leading indicators are the data points that I can

measure on the way to achieving my objectives and are
shown in table 2.5.

Table 2.5 Define the leading indicators that you will measure.

Indicator Current method | Target method Frequency
E;\:rgy & water Quarterly bills Daily dashboard & alerts Daily
Irrigation timing Fixed schedule | Dynamic scheduling Daily
Load scheduling None Peak solar/off-peak timing | Continuous
Leak detection None Leak monitoring Continuous

2.2.1 Mapping my home to a digital
representation

Now that I have defined my objectives and how I will
measure these, together with the types of data that I will
need to build a digital representation of my home, I start to



think about the minimum viable representation that will
support my objectives.

I will need to gather and digitize data about electricity
consumption, water usage, solar production, and occupancy
to keep my digital model synchronized with changes in the
physical system. My home is old, without any smart-home
infrastructure and I don’t have any of this data available
digitally yet, so I will need to digitize historical data (to
understand the baseline), and improve how I gather this
data in the future to make better decisions. Like most
people, I find being able to place data in its spatial context
helps me to understand it, and so I will need a model of my
home that will show the data in context, as well as a
floorplan to map out future sensor placement.

2.2.2 Start with what you have

I know that I will need to add a range of sensors to my
home to gather the key data about the physical environment
that will be required to support my objectives. But before I
rush out and buy sensors, I can use a range of information
sources that I already have to build my digital
representation and to establish a digital baseline of the
metrics of interest. This is just as true in many organizations
looking to build a digital twin as it is in my example. The
physical system you are building a twin of is likely already
captured in many sources that you can use to build your
digital representation. Lets look at what these sources of
information are—not all of them will be relevant for my
home digital twin, but as you look to larger and more
complex systems, they will be increasingly important.

2.3 Information sources for digital
representation



Most physical systems are extensively documented via
drawings, maintenance logs, reports, and photos. This multi-
modal documentation holds decades of operational
knowledge, forming the foundation of current asset
management.

However, much of this information is in formats digital twin
platforms can’t directly process, for example scanned PDFs,
paper records, and legacy files. Transforming these diverse
sources into machine-readable formats is an important first
step in building comprehensive digital representations
without starting from scratch.

2.3.1 Historical records

Text-based documents capturing a system’s state over time
are essential for digital representation, providing data for
change analysis and machine learning training. Examples
include:

¢ A maintenance record that captures work that has been
performed on a piece of equipment at some time in the
past.

e An incident report or failure record that provides
information about system vulnerabilities, failure modes,
and recovery procedures.

e A work order that records work to be scheduled in the
future.

o A utility bill, as illustrated in figure 2.1 that records a
meter reading at a point in time.

Digitizing historical records is important as it allows you to
understand how physical systems have performed over time,
capture changes made to the physical system, and,
importantly, provide the training data necessary for machine
learning algorithms.



Meter Number: MEWA Number of Days in Billing Period: 91

Current Meter Reading: 3012 Energy Units Used: 75

Details of Gas Supply Charges

Meter  for period 01/02/2024-02/05f2024, MIRN;

Daily Supply Charge 24.38 cents per day for 31 Days $22.19
Account Service Fee 7.64 cents per day for 971 Days %$6.95
Residential Gas Usage First 0.83 Units per day @ 16.83 cents per unit for 971 Days $12.66
Rounding Debit $0.01
Currgnt Charges $40.05
Includes GST of £3.64

Figure 2.1 A sample gas bill as generated quarterly by my residential gas
provider. The current meter reading is provided for a stated date.

TRY IT OUT: UTILITY BILL ANALYSIS

To reduce my home water and energy consumption, I must
first establish the current utility usage baseline. A predictive
digital twin requires observing the past, understanding the
present, and forecasting the future.

Home utilities typically rely on periodic manual meter
readings (quarterly for gas/water in this example) or low-
resolution digital data (daily for electricity). This fragmented
approach creates challenges for unified analysis:

e Swivel chair integration - data is scattered across
separate utility web portals, lacking a unified digital
view.

e Data format inconsistency - historical data exists across
varying formats (APIs, downloadable CSVs, and non-
machine-readable PDF bills).

o Infrequent updates - quarterly billing prevents timely
behavior modification.



To understand the 10-year consumption baseline (e.g.,
seasonal usage patterns) and feed historical data to machine
learning models for prediction (e.g., testing the impact of
weather and solar production), this locked PDF data must be
digitized.

The solution is to use optical character recognition (OCR),
specifically an open-source library like Tesseract, to extract
meter readings and dates from historical PDF bills. This
converts the information into a historized, machine-readable
format—although not perfect, OCR provides a valuable
mechanism for digitizing paper records. The sample code in
listing 2.1 uses Tesseract to extract the date and meter
reading from the PDF bill shown in figure 2.1. Before running
this code sample, ensure you have installed Tesseract
(available from https://tesseract-
ocr.github.io/tessdoc/Installation.html) on your system and

that it is available in your path.

NOTE

All code samples are available in the book’s GitHub
repository here https://github.com/digital-twins-in-action,
together with instructions on how to set up your Python
environment to run them.


https://tesseract-ocr.github.io/tessdoc/Installation.html
https://github.com/digital-twins-in-action

from PIL import Image
import pytesseract, re

def extract_meter_reading(text):
pattern = r"Current Meter Reading:\s*x(\d+)" #1
match = re.search(pattern, text)
return int(match.group(1)) if match else None

def extract_date(text):
pattern = r"(\d{1,2}/\d{1,2}/\d{4})" #2
matches = re.findall(pattern, text)
return matches[-1] if matches else None

def read_bill():
image = Image.open(r"./images/gasBill.png")
text = pytesseract.image_to_string(image)

meter_reading = extract_meter_reading(text)
date = extract_date(text)

return {
"meter_reading": meter_reading,
"date": date

}

#1 A regular expression to extract the meter reading based on the
format of the bill.

#2 There are multiple dates in this bill. I want the last date that
appears.

Once I have configured the regular expression in the code to
extract the data I require (date and meter reading), I can
then run this code against the decade worth of PDF bills I
have been emailed by my utility providers. The output of this
is shown in figure 2.2, which captures my household energy
consumption for the past 10 years. I do the same with my
water bills so that I have a baseline of consumption before I
build my digital twin.
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Figure 2.2 Ten years' worth of energy consumption data extracted from
PDF gas and electricity bills by OCR.

Having converted all this data from PDF bills into a machine
readable format, I can immediately gain insights from the
data including seasonal variation on consumption, and the
change in consumption when transitioning from a gas hot
water system to solar hot water, as well as electricity
production from solar panels installed around 2020. I will
use this digitized energy data in my digital twin, but will
combine it with higher resolution data from sensors moving
forward.

2.3.2 Photographs

Photographs are accessible, powerful data sources, often
created using just a smartphone. They provide a vital visual
record and temporal sequence of changes and many
organizations may already maintain extensive photographic
records which can be used to reconstruct timelines of

Gas [Units)



physical changes or correlate visual documentation with
operational events. Photographs offer:

1. Contextual documentation - a visual record of the
physical state at a point in time, useful for tracking
degradation or construction progress.

2. Source of structured data computer vision can
automatically extract information like equipment IDs,
valve positions, gauge readings, and corrosion levels,
digitizing operational state data.

3. Metadata - contains useful information like location,
position, and camera pose.

TRY IT OUT: EXTRACT STRUCTURED DATA FROM A
PHOTOGRAPH

In the context of building my home digital twin, photographs
are an important source of data related to utility
consumption. Since utility bills are only generated quarterly,
I do not have real time consumption data to inform decisions
and actions. I can take photographs of utility meters and
then use computer vision to extract data from the analog
water and gas meters into a machine readable format and
update the state within the digital twin of my home at a
much higher frequency than digitizing quarterly bills. This is
demonstrated in figure 2.3 using a photo of my water meter
taken with a smartphone, and the same library, Tesseract, as
I used to extract text from the PDF bill.



Original image Cropped and converted Inverted for improved
before processing to grayscale extraction of digits

Figure 2.3 A photograph of my residential water meter (1), with the area
of interest extracted and converted to grayscale in (2) before being
inverted in (3) to enable OCR extraction of the digits.

The code, shown in listing 2.2, is slightly more complex due
to the need to crop the area in the image where the meter
digits are and preprocess the image to get an optimal result.
Figure 2.3 shows the progression of the image through the
extraction process. This code will extract the number 42678
from the photograph, which can then be associated with the
date the photo was taken and it’s location, and stored in a
database.




import cv2, pytesseract
import numpy as np
from PIL import Image, ImageOps

def extract_meter_reading(image_path, display_results=True):

img = Image.open(image_path)

crop_box = (1000, 890, 1700, 1030) #1

cropped_img = img.crop(crop_box) #2

gray_img = ImageOps.grayscale(cropped_img) #3

inverted_img = ImageOps.invert(gray_img) #4

meter_reading = pytesseract.image_to_string( #5
inverted_img,
config="'--psm 7 -c tessedit_char_whitelist=0123456789"

)

meter_reading = meter_reading.strip() #6

return meter_reading

#1 This is the bounding box of the digits in the image.

#2 Crop the image to the digit bounding box.

#3 Convert the cropped image to grayscale.

#4 Invert the grayscale image. This often helps OCR for dark digits on a
light background (like the meter reading).

#5 Use OCR to extract text. Treat the image as a single line of text
(often good for meter readings) and restrict OCR to only digits.

#6 Clean up the extracted text (remove whitespace, newlines).

You may wonder if it is worth going to the trouble of taking a
photograph of the meter daily and running the image
through this process to extract the reading. Why not simply
enter the reading into a computer to digitize it? By placing
an IoT camera over the analog meter, I can use OCR on the
photographs it takes to fully automate taking a daily meter
reading.

2.3.3 Videos

Static capture methods provide snapshots, but video
streams introduce continuous temporal monitoring, updating



the digital representation of your physical system in near
real-time. This captures the dynamic nature of operational
environments.

Video data can be integrated into a digital twin using three
main strategies:

CONTINUOUS STREAMING

The simplest, but most costly method. The entire video feed
is continuously transmitted to the digital twin for real-time
monitoring and storage. This demands high bandwidth and
storage resources.

CHANGE DETECTION

A more efficient variation where data is only sent or stored
when a relevant physical change (e.g., movement or new
appearance) is detected in the video stream. This is common
in security applications where only event-based fragments
are transmitted.

EDGE PROCESSING WITH SELECTIVE TRANSMISSION

The most resource-efficient method. Raw video streams
consume massive bandwidth when transmitted to remote
servers or the cloud. Instead, video data is processed locally
at the edge (close to the physical asset). Only derived,
processed data (for example, 'vehicle detected', 'occupancy
count is 3") is selectively transmitted, drastically reducing
bandwidth and improving efficiency.



NOTE

At the edge refers to processing data and running
analytics close to where the physical asset or data is
located, rather than transporting the data to a centralized
data center or the cloud. It offers benefits in terms of
reduced latency, bandwidth efficiency, and the ability to
respond to data quickly.

TRY IT OUT: DETECT MULTIPLE OBJECTS IN A VIDEO
FEED

Computer vision detects the position and type of objects
within video frames, assigning bounding boxes and
confidence scores. This allows digital twins to represent the
location and status of physical objects like people, vehicles,
or packages.

By running object detection at the edge, only the processed
information (e.g., 'vehicle detected at entrance') is
transmitted, not the full, high-bandwidth video stream.

You Only Look Once (YOLO -
https://www.v7labs.com/blog/yolo-object-detection) is a
popular, high-speed convolutional neural network model that
predicts multiple object bounding boxes in a single pass. You
can try the YOLO version 8 model out yourself with the code
shown in listing 2.3, run on a computer equipped with a
webcam. Whereas this code simply overlays the video feed
with the detected objects, in a complete application, you
would transmit the detected object events to your digital
twin application (at a much lower cost than transmitting the
full video feed).



https://www.v7labs.com/blog/yolo-object-detection

import cv2
import numpy as np
from ultralytics import YOLO

def run_webcam_detection():
model = YOLO("yolov8n.pt") #1
cap = cv2.VideoCapture(0) #2
cap.set(cv2.CAP_PROP_FRAME_WIDTH, 640) #3
cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 480)

while True:
ret, frame = cap.read() #4
results = model(frame) #5
annotated_frame = results[0].plot() #6
cv2.imshow("YOLOv8 Detection", annotated_frame) #7

if cv2.waitKey(1) & OxFF == ord('q'):
break

cap.release()
cv2.destroyAllWindows ()

#1 Use the YOLOV8 nano model, which is optimized for speed and
resource efficiency.

#2 Open the webcam.

#3 Set the webcam properties.

#4 Continuously read a frame from the webcam.

#5 Run YOLOvVS inference on the frame.

#6 Visualize the results on the frame.

#7 Display the annotated frame.

Figure 2.4 demonstrates the use of the YOLO model to
detect people within a room, which can be used to
determine occupancy within a room by detecting people
within the frame.
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Figure 2.4 An example of using a multi object-detection computer vision
model over a video stream using the YOLO v8 model to determine room
occupancy. The model draws a bounding box around each object it
detects in the stream, and adds a label to the box with a confidence
score, which is a combined percentage representing the model’s
certainty that a detected object belongs to a specific class and that the
bounding box contains an object.

In my home digital twin, I can make use of edge object
detection in a video stream to detect occupancy levels in the
home, and use this data to make decisions about energy or
water use.

While the use of video data to capture physical systems for
digital representation requires careful consideration of
architecture, privacy, and data management, the resulting
value extends far beyond simple visualization, creating
digital twins that truly mirror the living, changing nature of
physical systems. As computational capabilities and
computer vision algorithms continue to advance, video will
increasingly serve as a foundational data source for digital



twins across industries, enabling levels of fidelity and
responsiveness previously unattainable.

2.3.4 Engineering documents

2D drawings remain the foundational language of
engineering, construction, and operations across many
industries due to their ability to reduce complexity through
the use of visual abstractions that convey large amounts of
information through standardized symbols and conventions.

An example of this is the fragment of a process flow diagram
(PFD) shown in figure 2.5. A PFD is commonly found in
chemical or process engineering and visually maps the
sequence of actions and flow of materials in a process.
Through the use of standardized symbols representing a
pressure vessel, valve, condenser and heater, together with
conventions regarding what the lines in the diagram
represent, this compact document conveys a significant
amount of information to a skilled process engineer. This
diagram represents the flow through a distillation column
separating a mixture of pentane and hexane (the feed) into
streams of pentane (distillate) and hexane (bottoms), using
feedback composition control. It shows how these
components are physically connected and how gases and
liquids flow through the process.
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Figure 2.5 A simple example of a process flow diagram (PFD) showing
the components of a chemical process using standard symbols to
represent physical components and their relationships.

Another type of engineering document that is important
within many industrial contexts is a piping and
instrumentation diagram (P&ID). These documents
represent the engineering view of an industrial process (such
as an oil refinery), showing the complex relationships
between equipment, piping, and instrumentation, creating a
comprehensive schematic blueprint of the physical process,
again using standardized symbols to represent the physical
arrangement of components and the functional relationships
between them. A simple example of a P&ID is shown in
figure 2.6 and represents a tank and a pump and the
connections between them, including representation of the
instruments that measure aspects of this process, including
the level of liquid in the tank and the pressure within the
pipe from the pump.
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Figure 2.6 A sample piping and instrumentation (PID) diagram showing
how complex physical systems can be logically represented in a
diagram. Source Wikipedia. Licensed under CC BY-SA 3.0

Both PFD and P&ID documents are critical document based
representations of a physical system that are important to
consider when looking to capture that system (in this case, a
complex industrial process) and represent it digitally. Their
importance is due to:

e As documents that define, in great detail, the physical
structure and relationships that make up the physical
system they can be used to create an accurate digital
model of the physical system.

e As documents related to the physical system, a digital
twin can contextualize them, linking and relating them to
other pieces of information within the organization. This
assists in information retrieval and an associated



https://en.wikipedia.org/wiki/Piping_and_instrumentation_diagram#/media/File:Pump_with_tank_pid_en.svg
https://creativecommons.org/licenses/by-sa/3.0/

reduction in the time taken to make high quality
decisions.

But as raster graphics (as the PFD in figure 2.5 and the P&ID
in figure 2.6 are printed here), a computer cannot
understand the information contained in these documents
without some further processing. Luckily, computer vision,
and more recently, vision capable large language models
(LLMs) can help to digitize these documents into a
structured format that can be used.

TRY IT OUT: EXTRACT INFORMATION FROM AN
ENGINEERING DOCUMENT

P&IDs, as shown in Figure 2.6, often exist as legacy
documents, either in paper form or scanned PDF documents
with multiple revisions, annotations, and different symbols.
The diagrams themselves are designed for human, rather
than machine, interpretation and contain important
information related to industrial sensor locations and
identifiers, control logic, and topological information.
Digitizing these documents and transforming the information
they contain into structured information that can be
processed by machines is critical in any digital twin of an
industrial process.

LLMs with multi-modal understanding can be used to analyze
engineering documents and transform them into machine
readable representations that can further be used to create
a digital model of the process defined in the diagram.

Listing 2.4 uses Anthropic’s Claude Sonnet 4 model and a
simple prompt to convert the sample P&ID diagram shown in
figure 2.6, to a structured JSON format. Fine-tuning the
prompt allows you to customize the structure of the
generated JSON. To run this code, you will need an API key



from Anthropic, which you can get here:
https://www.anthropic.com/api. The sample P&ID is
provided as an image in the books GitHub repository.



https://www.anthropic.com/api

import baseé4, requests

def analyze_image(api_key, image_path, prompt):
with open(image_path, "rb") as f:
image_data = baseé4.bé4encode(f.read()).decode('utf-8"')

response = requests.post(
"https://api.anthropic.com/vl/messages",
headers={
"x-api-key": api_key,
"anthropic-version": "2023-06-01",
"content-type": "application/json"
o
json={
"model": "claude-sonnet-4-20250514",
"max_tokens": 5000, #1
"messages": [{
"role": "user",
"content": [
{"type": "text", "text": prompt},
{"type": "image", "source": {
"type": "baseb4",
"media_type": "image/png",
"data": image_data
3
]
F]
+
)

return response.json()["content"][0]["text"]

if __name__ == "__main__":
api_key = "sk_x¥%x"

result = analyze_image(

api_key,

"images/pid.png",

"Convert this diagram to JSON" #2
)



#1 This parameter defines the maximum number of tokens the model
should generate before stopping. Customize this to the number of
tokens you need.

#2 You can fine tune the prompt here to generate output in a different
form.

The model is able to extract information from the visual
diagram and represent it as structured JSON, as shown in
listing 2.5. This structured data can be used to create a
digital model of this process in a knowledge graph, as we
will see in Chapter 5.



{
"equipment": [
{
"id": "TeO1",
"type": "STORAGE_TANK",
"service": "Storage Tank",
"data": {
"diameter": "1000 mm",
"height": "3000 mm",
"capacity": "2.4 m3"
}I
"design_conditions": {
"pressure": "10 barg",
"temperature": "50 °C"
}l
"connections": [
{
"id": "N1",
"type": "inlet",
"line": "01-100-PE-N",
"source": "UNIT 1",
"description": "Solvent inlet from Unit 1"
+
]
}
]I
"instruments": [],
"Lines": [],
"control_systems": []

2.3.5 External systems

External systems provide context that is important when
building a digital representation of a physical system. In
many industries, systems external to your digital twin (but
internal to your organization), such as enterprise resource
planning (ERP) and SCADA systems, will contain information
about your equipment, its maintenance history, performance



and so on. Some external systems may offer application
programming interface (API) access, making integration
technically straightforward via RESTful APIs, GraphQL
endpoints, and webhook subscriptions that provide real-time
or near-real-time data feeds, while others may need
significant effort to access the data they hold.

In my home digital twin, information that can be used to
achieve the objectives is available from several external
systems. I can access weather forecast data generated from
the European Centre for Medium-Range Weather Forecasts
(ECMWF) models that we saw in chapter 1, which can be
used to predict rainfall and automatically adjust the
irrigation system. My electricity provider provides daily
electricity usage data via their website that can be used to
inform the system more regularly than a quarterly bill. This
contextual information is what I will use to move from
reactive problem solving towards predictive optimization.

TRY IT OUT: GET FORECAST RAINFALL FROM THE
ECMWF

A subset of ECMWEF real-time forecast data is made available
to the public and can be accessed for free up to ten times a
day from the Open-Meteo service (https://open-
meteo.com). The following URL, when pasted into a browser,
will return the rainfall forecast over the next 7 days from the
ECMWF’s Integrated Forecasting System (IFS) for the city of
Perth.

https://api.open-meteo.com/vl/forecast?latitude=-31.9522&longitude=1
15.

= 8614&hourly=rain&models=ecmwf_ifs025&forecast_days=7

I will integrate a daily call to this API by my digital twin to
provide information that I can use to make dynamic


https://open-meteo.com/

decisions about whether to irrigate the garden or not.

2.4 Spatial and geometric
representations

Think back to the first time you heard the term 'digital twin'.
Chances are, you pictured a rich 3D visual model that closely
represents reality. There is a good reason for this: many
modern digital twins incorporate 3D models of the physical
system they mirror, for a number of reasons

e A 3D model provides an immersive spatial context that
allows people to visualize a complex system as it
actually exists in the physical world, aiding in their
understanding of the size, shape, location, and
relationship of physical objects.

e Overlaying a 3D model of a built asset over that of the
design provides a powerful mechanism to see where the
built asset differs from the design view.

e The models can be used to simulate physical phenomena
in the real world, such as the flow of air over a newly
designed vehicle.

e They are well suited to the contextualization of data
received about the physical environment via sensors,
allowing it to be spatially located, which then aids in the
consumption and understanding of the data.

In addition to the immersive realism experience offered by
3D visualizations, 2D geometric representations that show
layouts and measurements are no less important when
capturing a digital representation of reality. Just like
engineering documents and drawings, 2D geometric
representations of physical spaces often employ domain-
specific visual abstractions that clearly convey information



about the physical world without the complexity that a 3D
spatially accurate model may bring.

2.4.1 2D geometric models

Long before computer graphics enabled photorealistic 3D
models, maps, floorplans, and blueprints allowed engineers,
architects, planners, and operators to understand, design,
and manage complex spatial relationships in the real world.
In digital twin implementations, these traditional formats
retain their importance for the reasons that they are
information dense, universally understood representations
that are, in many cases, already integrated with existing
workflows.

MAPS

As we saw in Chapter 1, the 2D geometric representation of
a physical area that is provided by a geographical map forms
the basis of many digital twins. Maps are spatial reference
frameworks that provide geographic context, location
relationships and environmental understanding that many
people are familiar with, having been taught to use them
from a young age.

Soil maps, geological surveys, and environmental hazard
zones documented in specialized maps provide critical
information for understanding foundation conditions, seismic
risks, and environmental constraints that affect system
design and operation. This contextual information is
essential for creating digital twins that accurately represent
how physical systems interact with their environmental
setting.

Geographic Information Systems (GIS) serve as the
authoritative foundation for spatially-referenced digital



twins, providing standardized frameworks for capturing,
storing, analyzing, and visualizing geospatial data with
precise coordinate reference systems and established
accuracy standards.

FLOORPLANS

Floorplans instantly convey room count, size, and layout
using simple, scaled diagrams and standard architectural
symbols. While 3D models contain the same information,
floorplans deliver it more efficiently, providing a clear,
uncluttered view of spatial logic.

These precise measurements enable floorplans to serve as
powerful computational tools. Digital formats allow path-
finding algorithms (like A* and Dijkstra’s) to calculate
optimal routes between any two points. This is crucial for
comprehensive digital twins that simulate movement, such
as tracking people in an office or robots in a warehouse.

For large-scale implementations, 2D floorplans provide the
essential foundation, serving two dual purposes:

e Instrumentation mapping - laying out sensor and
equipment locations.

e Navigation - creating intuitive interfaces that allow users
to zoom into detailed 3D views of specific areas.

The enduring value of a floorplan lies in its clarity, which
translates directly into both computational efficiency and
user understanding, making it indispensable for digitally
navigating and representing physical spaces. Figure 2.7
shows a floorplan that I have created of my home that I will
be using in my digital twin as the basis of a digital
representation of the physical environment.



l

Figure 2.7 A floorplan of my home that I will use in my digital twin to
map sensor placement, and as the basis to build a 3D model of the
building.

BLUEPRINTS AND ARCHITECTURAL DRAWINGS

Blueprints are specialized, detailed geometric drawings used
by architects and engineers to ensure a building is
constructed to specific standards. They contain significantly
more detail than a floorplan, including millimeter-accurate
dimensions, material lists, and construction specifications,
detail that can be difficult to achieve through simple
scanning.

A digital twin uses blueprints to create a precise digital
model of a physical structure, enabling instant
comprehension of spatial relationships, adjacencies, and
exact dimensions. This is crucial for twins requiring high-
accuracy spatial modeling. Alternatively, the digital twin can
provide a spatial or temporal link to a digital blueprint
repository, offering quick access to the source



documentation when needed. Figure 2.8 shows a blueprint
of my home that I will use to build a digital model of my
home to be used in the digital twin.
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Figure 2.8 An example of a blueprint of my home, showing dimensions
and material specifications that are an important source of spatial
information when modelling physical structures digitally.

ENGINEERING DRAWINGS

Engineering drawings are the definitive expression of
engineering intent, providing a universal standard that uses
symbols, conventions, and annotations to define an object’s
design in precise detail. They provide essential information
throughout the object’s lifecycle.

The typical layered structure of these drawings supports
selective information extraction. Layers for dimensions,
annotations, and geometric features can be processed
independently to isolate data specific to modeling needs.

Crucially, drawing revision systems provide historical
tracking of design changes. Understanding this design
evolution ensures that the digital representation matches the
system’s current configuration, accounting for field
modifications or design improvements.

The engineering drawing in figure 2.9 shows the geometry
and dimensions of an air conditioning unit I have installed in
my home. The drawing conveys the geometry and
dimensions of the physical object in a multi-view projection.
This information can be used both to plan the placement of
the physical device as well as to create an accurate 3D
model of the device to be placed in a 3D visualization.
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Figure 2.9 An engineering drawing of an external reverse cycle air
conditioning unit. © Mitsubishi Heavy Industries.

2.4.2 3D geometric models

While 2D models convey layout logic, many digital twins
require the depth and detail provided by 3D geometric
models. These models form the visual and spatial backbone
of digital twin applications, transforming abstract data into
intuitive, interactive representations.

The core value of 3D models is that they:

1. Enable exploration of complex systems from multiple
perspectives.

2. Show data within a spatial context, making it meaningful
and actionable.

3. Support collaborative design before construction.

Applications require different 3D approaches, each offering
distinct advantages: mesh-based models prioritize
performance, parametric designs capture engineering intent,
and point clouds preserve precise measurements.

BUILDING INFORMATION MODELS



A building information model (BIM) is a 3D model of a
building or infrastructure asset that also contains rich
information about the building’s components, materials, and
performance characteristics. BIM models typically contain
detailed information about structural elements, mechanical
systems, electrical networks, plumbing infrastructure, and
architectural features, along with their material properties,
performance specifications, and maintenance requirements.
This integrated approach enables architects, engineers, and
facility managers to analyze building performance, simulate
different scenarios, and coordinate complex construction and
renovation projects with unprecedented accuracy.

The industry foundation classes (IFC) are an ISO standard
(https://www.iso.org/standard/84123.html) that serves as
the primary open file format for exchanging BIM data. IFC
files contain not only the geometric representation of
building elements but also their semantic meaning—a wall
object understands that it's a wall, knows its thermal
properties, structural capacity, and relationships to adjacent
spaces and systems.

You can navigate to
https://3dviewer.net/#model=assets/models/haus.ifc to
view a simple BIM model defined as an IFC file as shown in
figure 2.10, showing both the geometric model and the
properties associated with the selected wall.
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Figure 2.10 An example of a BIM model in IFC showing the 3D model and
additional information stored within it. © Viktor Kovacs. Data licensed
under MIT.

MESH-BASED 3D MODELS

Mesh-based 3D models offer an accessible entry point into
digital twin visualization. They can be created and updated
with relatively basic skills compared to other 3D modeling
approaches, making them particularly attractive for digital
twins where speed of deployment matters more than
absolute precision.

Geometric meshes enable efficient 3D visualization that can
serve hundreds or thousands of users simultaneously. You
can view the mesh-based 3D model of the city of Melbourne
in Australia, shown in figure 2.11, by navigating to
https://cityofmelbourne.maps.arcgis.com/apps/webappview
er3d/index.html?id=b555219a327b4535a89d8ec6e97780cf.



https://github.com/kovacsv/Online3DViewer/blob/master/LICENSE.md
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Figure 2.11 A mesh-based 3D model of the city of Melbourne illustrating
an efficient digital representation of a large physical environment. Data
© City of Melbourne. Licensed under CC BY 4.0

This accessibility comes with trade-offs. Mesh models
approximate complex shapes through networks of points and
connecting lines, inherently sacrificing precision for
performance. Increasing mesh density improves accuracy
but demands greater computational resources, creating a
constant balance between visual fidelity and system
responsiveness. Despite these limitations, mesh-based
models excel in their primary role of intuitive visualization.
They prove especially valuable in browser-based digital twin
applications, where efficient rendering of realistic
environments enables users to quickly understand and
navigate complex physical assets without requiring
specialized software or high-end hardware.

PARAMETRIC 3D MODELS


https://creativecommons.org/licenses/by/4.0/

Parametric 3D models define geometry through
mathematical relationships, parameters, and constraints
rather than explicit coordinate data like mesh based models.
A cylinder in a parametric model may be defined by its
radius and height, and the relationship between these, for
example, that the height of the cylinder is three times the
radius. The dimensions of the geometric object may change,
but this relationship will be maintained in a parametric
model. This type of model can easily be iterated on by
simply modifying parameters without having to rebuild the
whole model, while maintaining the intent of the design
during modifications. Parametric modelling is popular and
essential in many industries where the accuracy and
precision of complex designs are essential, like aerospace,
automotive, and mechanical engineering. Most modern
professional computer aided design (CAD) software is
primarily parametric.

Parametric 3D models provide capabilities within digital twins
that extend beyond those offered by mesh based geometric
modelling. If you are building a design driven digital twin
where it is important to model the underlying engineering
design that governs a structure or system, or you need to
precisely model constraints such as clearances, alignment,
and dimensions, then parametric models are essential.
Parametric models also have the ability to be modified
dynamically based on sensor readings or reconfigured to
execute different simulations. Furthermore, parametric
models can represent entire product families, automatically
generating variants for different applications. A CAD model
of an offshore oil platform rendered in the Cognite Data
Fusion™ web-based digital twin platform is shown in figure
2.12.
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production platform—a complex industrial facility located in the North
Sea—as pictured in Cognite Data Fusion™, an industrial digital twin
platform. Image © Cognite™ ( https://www.cognite.com/en),
reproduced with permission.

POINT CLOUDS

A point cloud is a collection of often millions or billions of
points in 3D space, with each point having spatial co-
ordinates (X,Yy,z) and color, timestamp, and intensity
information. The huge number of discrete points rendered in
3D space collectively represent the geometric shape of
physical objects at the time they are captured. This
remarkably simple data structure, generated with laser or
light scanning, or structure from motion, is a powerful
mechanism for capturing and recreating physical objects
within a digital twin, particularly large scale environments
like buildings, infrastructure, and terrain.

Point clouds are particularly useful for tracking changes over
time (with the appropriate equipment, laser scans can be


https://www.cognite.com/en

performed quickly), and identifying wear or damage,
particularly with complex or irregularly shaped structures.
Unlike mesh based geometric models, point clouds have no
inherent surface or volume representation, and are relatively
storage intensive. They also support taking precise
measurements within the 3D model since the position of
every point is stored with a high degree of precision, being
based on the calculation of how long a beam of light from a
laser takes to bounce off the physical object. Figure 2.13
shows a point cloud of the Morro Bay power plant in
California, and how a measurement of the height of the
stack can be taken in the model. You can explore this point
cloud yourself by navigating to https://viewer.copc.io/?

g=https://3d.dtia.site/pointcloud/ept.json.
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Figure 2.13 A point cloud visualization of the Morro Bay power station,
showing how measurements can be taken within the point cloud. ©
PG&E Diablo Canyon Power Plant (DCPP): San Simeon and Cambria
Faults, CA. Distributed by OpenTopography.
https://doi.org/10.5069/G9CN71V5

OTHER TYPES OF 3D MODELS
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Some domains require fundamentally different approaches
to spatial representation. Medical imaging, materials science,
and non-destructive testing have developed sophisticated
techniques for capturing and modeling internal structures
that remain invisible to conventional 3D scanning methods.
Among these, computed tomography (CAT or CT scanning)
and voxel-based modeling represent powerful paradigms
that are also finding applications beyond their traditional
medical origins. A voxel (volume pixel) represents the 3D
equivalent of a pixel, defining a discrete unit of volume
within a 3D space. Unlike traditional geometric models that
define surfaces and boundaries, voxel models partition space
into a regular grid where each cell contains specific
properties or material characteristics. This difference in
representation makes voxels particularly suited for modeling
heterogeneous materials, internal structures, and
phenomena that vary continuously through volume rather
than existing only at surfaces.

2.5 Spatial mapping and reference
systems

We can see that digitally representing physical assets and
objects as 2D representations, 3D models, and digitized data
from documents is a powerful aid to understanding, but
there is another dimension to this representation, and that is
the position of the objects in the real world. Spatial
reference systems are systems that allow us to precisely
measure locations on the surface of the earth and with many
different types in use, it is crucial to understand how these
systems work to create an accurate spatial representation of
reality where we can precisely position objects in virtual
space and determine spatial relationships between objects.

2.5.1 Coordinate systems and projections



When modelling physical objects, there are a number of
categories of reference systems that you need to be familiar
with. Often, you will need to transform between each of
these different systems when moving between
representations, and it is important to understand what each
type of reference system is, what it is used for, and how you
may convert between each type.



Table 2.6 Different types of coordinate reference systems that are
important when building digital representations of a physical system.

- Integration
System Description Key use challenges
Site-specific
frameworks using | Engineering drawings Coordinates are
an origin point and CAD models; only meaningful
Local : L . .

. and axes aligned | intuitive for site design locally,
coordinate ) . L
systems to project and calculatlor_1_s (for _compllcz_;ltlng _

features (for example a facility integration with
example building | layout) external data
grids)
Spherical systems Angular nature
Geoaraphic representing GPS data (often using complicates
coorgdinzte points on Earth’s | the WGS84 datum / engineering
surface EPSG:4326), satellite calculations
systems . . . .
(GCS) (spheroid) using imagery, and global (distances,
Latitude and asset tracking areas) due to
Longitude Earth’s curvature
Earth-Centred, Earth-
. Fixed (ECEF) /
3D Cartesian ) "
Geocentric | coordinates with EPSG'497.8 IS common.
. - Used for direct
coordinate | the origin (0,0,0) . N/A
calculation of 3D
systems at the center of X
distances and vectors
the Earth
between any two global
points
PCS inherently
. distort shape or
Projected Techniques that \r/nV(;b h?lfrc:tta]ol:d(aorrglllne area; for
coordinate | flatten the Earth’s pping ! example, Web
. Google Maps) and
systems spheroid onto a . Mercator
(PCS) 2D plane Universal Transverse exaggerates size
Mercator (UTM)
away from the
Equator




Figure 2.14 shows the same point on the earth’s surface
represented in a geographic coordinate system (latitude,
longitude) on the left, and in a projected coordinate system
(EPSG:54050). Notice that the projected coordinate system
coordinates are presented as meters from an origin point on
a 2D plane, making calculations simpler than those required
with with the angular nature of the spherical geographic

coordinate system.
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Figure 2.14 An example of the same point represented in a geographic
coordinate system and a projected coordinate system. Copyright © 2025

Esri and its licensors. All rights reserved.



NOTE

The European Petroleum Survey Group (EPSG) originated
a public registry of datums, coordinate reference systems,
and earth ellipsoids known as the EPSG Geodetic
Parameter Dataset, assigning a unique code to each entity,
known as the EPSG code. For the WGS84 geographic
coordinate reference system (the coordinates that you
may be familiar with in GPS), the EPSG code of the 2D
geographic coordinate reference system is EPSG:4326.

TRY IT OUT: EXTRACT GEOGRAPHIC COORDINATES
FROM A PHOTOGRAPH

Photographs are an important way to digitally represent a
physical system, and many contain geographic coordinates
embedded in them via exchangeable image file format
(EXIF) metadata. Listing 2.6 demonstrates how geographic
coordinates can be extracted from a photograph to show
where on the earth’s surface the photograph was taken, and
plot this on Google Maps, showing how spatial context can
be extracted from a digital image of a physical object.



from PIL import Image
from PIL.ExifTags import TAGS, GPSTAGS
import webbrowser

def main():
exif = Image.open("./images/rockPaintings.jpg")._getexif() #1
gps = next((dict((GPSTAGS.get(k, k), v) for k, v in val.items())
for tag, val in exif.items() if TAGS.get(tag) == "GPSInfo"), {})

def convert_to_degrees(value): #2

d = float(valuel[0])
m = float(value[l])
s = float(value[2])

return d + (m / 60.0) + (s / 3600.0)

lat = convert_to_degrees(gps['GPSLatitude'])
lat *= -1 if gps['GPSLatitudeRef'] == 'S' else 1

lon = convert_to_degrees(gps['GPSLongitude'])
lon %= -1 if gps['GPSLongitudeRef'] == 'W' else 1

webbrowser.open(f"https://www.google.com/maps?q={lat}, {lon}") #3

if __name__ == "__main__":

main()

#1 Extract GPS coordinates from EXIF data in the photograph.

#2 Convert GPS coordinates to degrees in float format.

#3 Open Google Maps with a pin at the location where the photograph
was taken.

2.5.2 Coordinate transformations and
conversions

So why is it so important to understand the different types
of spatial reference systems when capturing physical
systems for digital representation? Real-world digital twin
projects frequently encounter coordinate system
complications, including mixed data sources using different



reference systems, incomplete transformation
documentation, and legacy systems with poorly defined
coordinate frameworks. Field survey data might use local
construction coordinates, while satellite imagery uses
geographic coordinates and facility drawings reference an
arbitrary site grid.

When we work with local coordinates in a floorplan or
blueprint, we specify an origin point (0,0) and everything in
the floorplan has local coordinates relative to that origin. To
position this floorplan on a real-world map using global
projected coordinates like the Universal Transverse Mercator
(UTM) projection, we need to transform each point’s
coordinates. This transformation from 2D local coordinates
to projected global coordinates involves two operations.
First, if the floorplan is not oriented towards true North but
rotated towards a 'site North', the coordinates must be
rotated by the offset angle 0. Then, they must be translated
by the offset from the target reference system’s origin. To
transform local 2D coordinates to UTM coordinates, a 3x3
matrix can be applied where (tx, ty) are the UTM
coordinates of the origin point (easting, northing).

cos(0) —sin(0) tzx
sin(f) cos(6) ty
0 0 1

Listing 2.7 shows how we can perform this coordinate
transformation in code by using matrix multiplication.



import numpy as np

def create_transformation_matrix(origin_easting,
origin_northing, rotation_angle_degrees):
theta = np.radians(rotation_angle_degrees)

matrix = np.array([ #1
[np.cos(theta), -np.sin(theta), origin_easting],
[np.sin(theta), np.cos(theta), origin_northing],
[0, 0, 1]

1

return matrix

def transform_coordinates(local_coords, transform_matrix):
homogeneous_coords = np.hstack( #2
[local_coords,
np.ones((local_coords.shape[0],

1)) 1]

utm_coords = (
transform_matrix @ homogeneous_coords.T).T #3

return utm_coords[:, :2] #4

if __name__ == "__main__":

origin_easting = 471519 #5
origin_northing = 7977628

rotation_angle = 30 #6

transform_matrix = create_transformation_matrix(
origin_easting, origin_northing, rotation_angle

)

local_coords = np.array([ #7
[0, 0],
[100, 0],
[0, 100],



[160, 100]
D

utm_coords = transform_coordinates(local_coords, transform_matrix)
print(utm_coords)

#1 Create the transformation matrix

#2 Add a column of ones to make the coordinates homogeneous
#3 Apply the transformation as a matrix multiplication

#4 Return just the easting and northing (drop the homogeneous
coordinate)

#5 UTM coordinates of the origin point

#6 Rotation angle in degrees of the site offset from true North
#7 The array of local coordinates

Figure 2.15 illustrates the coordinate transformation
performed in listing 2.8, showing the original local
coordinates in the 0,0 origin based reference grid, and then
the transformed coordinates in the UTM Zone 36S grid,
assuming that the site is offset by 30 degrees from true
North.

Local coordinate system UTM Zone 365
origin (0,0) Qrigin (471519, 7977628)
100 7877775 hd
True Site
North MNorth
80 7977750
ac’ ®
&0 TOTTTO0
40 7977675 ®
20 7977650
0 TOTTE2E ®
o 2 40 80 o 00 471460 471480 471500 471520 471540 471560 471580 471600

Figure 2.15 Visualization of the output of the code in listing 2.8 that
converts local coordinates to UTM coordinates in zone 36S (EPSG:32736)
with an origin point at 471519, 7977628 and a site offset of 30 degrees
from true North.

While it is important to understand the mathematics of how
coordinate transformations work, in practical digital twin
applications, you can leverage higher level libraries to



perform coordinate transforms for you. Listing 2.8 shows the
use of the Python version of the PROJ library
(https://proj.org), a popular library for geospatial coordinate
transformation to convert between UTM coodinates and
WGS84 with a single line of code.

from pyproj import Transformer

transformer = Transformer.from_crs(
"EPSG:32736",
"EPSG:4326",
always_xy=True)

easting, northing = 471519, 7977628
lon, lat = transformer.transform(easting, northing)
print(lon, 1lat)

2.6 Deciding what you need

We have covered many sources of information about
physical systems and spaces that you can use to build your
digital representation, but how do you decide which of these
to use? You may have hundreds of engineering documents
or hours of video of your operations, but before investing in
OCR or object detection, you should map each potential
information source back to your objectives and understand
whether that source supports your outcomes, and what
specific decisions it will enable. Understanding how accurate
and complete each potential information source is, together
with how easily it can be integrated into your digital twin,
will also help you assess whether it is useful or not.

In table 2.7 is a checklist where I have mapped which
information sources I will use to build a digital
representation of my home.


https://proj.org/

Table 2.7 Information source checklist for my home digital twin.

Source Home digital twin Priority | Effort Notes
Historical records
e 0O Utility - . Use OCR to
bills EIectr|C|t_y/water bills High Low extract data
for baseline
from PDFs
o [] .
Maintenance | Appliance service Scan rec_ellpts,
d history & warranties Low Low create digital
records y maintenance log
Visual documentation
Use a
Dh t Currerr:t Meter readings, High Low smartphone
pRotograpis | home condition 9 camera with
GPS metadata
e (1 Can be used to
Aerlal/drone Roof condition, solar Low Medium generate a
imagery panel placement photorealistic
3D mesh model
Engineering Documents
. bDIueErliJrlllfsmg vovirtlglpc?(l)r?ﬁouse Plans High Medium Scan and build a
. ; 3D mesh model
dimensions
External system data
e 1 Weather | Local forecast and High Low Free APIs
services historical climate available




data

Spatial representation

e 0O Floor | Room layouts for
plans sensor placement High Medium Generate from
- blueprint
planning
e O 3D mesh | Visual representation Uﬁgto rammetr
model for data Low High gr 3ngodelin Y
contextualization 9
software
e [
Coordinate Local coordinates _ PreC|s_e global
reference sufficient Low High coordinates not
system required

Classifying each information source with its importance
versus the effort it will take to incorporate into your twin
helps you to prioritise what to focus on first. I will start with
those sources that have a high priority and relatively low
effort, before moving on to those with high priority but
higher effort, before finally tackling those with lower priority.

2.7 Summary

e When building a digital twin and looking to capture

physical systems for digital representation, start with
objectives, not technology. Define specific, measurable
business outcomes before deciding how to capture
physical systems for digital representation, and at what
level of fidelity.

Historical documentation that captures designs,
drawings, and the state of systems can hold critical data



that can be extracted into a machine readable format
using OCR and computer vision, providing the temporal
context essential for predictive digital twins.

Photographs and videos are an important data source
when representing physical systems, both as
representations of the physical environment at a point in
time and as a source to build more complex 3D models
or extract information from.

Three main 3D representation approaches serve
complementary purposes: mesh-based models provide
efficient visualization for web browsers, parametric
models enable precise engineering and design iteration,
and point clouds capture complex geometries and track
physical changes over time.

Understanding coordinate systems (local, geographic,
projected) and transformation techniques ensures that
diverse data sources from GPS tracking to CAD drawings
can work together seamlessly.

Match representation fidelity to decision requirements
and start with the minimal possible representation of the
physical world in your digital twin. Prioritize what
aspects of the physical environment you will capture to
support your objectives.



3 Sensing the real world

This chapter covers

e The role of sensors in updating a digital twin

e Building a complete sensing system for real-world
applications

e Processing sensor data
e Managing sensors at scale

Digital twins depend on maintaining an accurate and timely
connection to reality. While 3D models show you what a system
looked like when designed, a true digital twin evolves
continuously with its physical counterpart through systematic
sensing of the physical world. Sensors bridge the physical and
digital worlds, continuously capturing changing conditions such
as temperature fluctuations, equipment vibrations, fluid flows,
and human activities and converting them into data streams
that keep digital twins synchronized with reality.

This data foundation allows digital twins to not just monitor,
but to optimize system performance by adjusting parameters in
the real system based on simulated outcomes. As digital twins
mature from descriptive (what happened) through predictive
(what will happen) to autonomous capabilities (automatically
adjusting system behavior), the demands for rich, timely data
increase dramatically.

This chapter walks you through building a complete sensing
architecture using the home digital twin project to illustrate
common challenges in any digital twin project: selecting
appropriate sensors, handling infrastructure constraints, and
balancing cost with capability. You'll learn how to design
sensing systems that capture the right data at the right
frequency, connect diverse sensors through multiple



communication protocols, and process sensor data into formats
suitable for digital twin applications. By the end of this chapter,
you’'ll understand how to architect sensing systems that
provide the data foundation necessary for digital twin
applications across any domain.

3.1 How sensors work

Modern sensors enable digital twins to monitor various aspects
of physical systems. Building management requires
environmental monitoring (temperature, humidity, occupancy)
to optimize heating, ventilation and air-conditioning (HVAC)
systems. Equipment health monitoring relies on motion and
vibration sensors (accelerometers, gyroscopes) to detect
anomalies before failure. Environmental quality monitoring
uses chemical sensors to track air pollutants and water
conditions. Energy management depends on electrical sensors
measuring current, voltage, and power consumption. Spatial
monitoring employs optical sensors (cameras, light detectors)
and ultrasonic sensors for occupancy and distance
measurement. Effective digital twins require strategic sensor
selection, deploying only sensors that provide data necessary
for the specific decisions and actions the system must take.

What distinguishes a digital twin from traditional monitoring
systems is both purpose and scale. Traditional monitoring
systems passively track metrics and alert when thresholds are
breached. Digital twins go further by enabling active control
based on continuous feedback. They require:

e Data density—comprehensive streams that enable
predictive capabilities through machine learning.

e Simulation capabilities—rich historical data for scenario
modeling and what-if analysis.

e Timely synchronization—frequent updates that keep the
digital model current with the physical system.



e Contextual understanding—multiple data streams that
reveal relationships between system components.

No matter which type of sensor you choose, they all follow a
similar path from physical measurement to digital data, as
shown in figure 3.1.

(o3 @ <o+ o |

Physical Transducer Signal Analog to Digital Digital
phenomena (e.g. thermistor) conditioning digital conversion processing twin

Figure 3.1 The sensor signal chain by which a change in the physical
environment makes its way to the digital twin representation via an
electronic sensor.

1. Physical change—something in the environment changes
(temperature rises, pressure increases, object moves).

2. Transduction—the sensor’s sensing element converts this
physical change into an electrical signal, typically a voltage
change.

3. Signal conditioning—the raw signal gets amplified and
filtered to remove noise.

4. Analog-to-digital conversion—the voltage is sampled and
converted to digital values.

5. Processing—digital signal processing performs offset and
gain correction, linearization and digital filtering.

6. Communication—formatted data is transmitted to your
digital twin platform.

Consider measuring temperature, which is something I will do
throughout my home. A thermistor in a temperature sensor I
have installed varies its resistance based on the ambient
temperature, producing a tiny proportional voltage in a circuit.
This millivolt signal needs amplification to a usable level. An
analog-to-digital converter (ADC) then samples this voltage,
converting each sample to a digital number. Firmware in the



sensor applies calibration curves to convert raw ADC counts to
actual temperature values, then formats this data for
transmission.

HOW IS A PHYSICAL CHANGE CONVERTED TO A DIGITAL VALUE?

The analog to digital conversion at the core of the sensor
signal chain is illustrated below. The continuously varying
voltage caused by temperature fluctuations is sampled once
every second (or at a frequency of 1Hz), and is quantized
with a 2-bit converter. Quantization refers to the process of
mapping the continuous output value (the voltage from the
sensor), to a smaller set of values. In a 2-bit converter, the
continuous voltage is mapped to 22 (4) possible values
represented by 2 bits. The figure shows that mapping the
continuous voltage to one of 4 possible values every second
means that some information is lost between time t8 and
time t10, where the fall in voltage below 0.33V is not
translated to the digital signal. If it's important to your digital
twin to be able to detect that fall in temperature, you need to
use a sensor with different conversion characteristics.

Analog signal (voltage)

Digitized signal
voltage (volls)

A

-
o
Quantization

0.0 > time (seconds)

t1 t8 t10
Sampling



Listing 3.1 shows how analog to digital conversion works to

convert a voltage reading to a calibrated moisture percentage
in a 10 bit converter.

def adc_read(voltage, bits=10, vref=3.3): #1
max_val = 2%xbits - 1
return int((voltage / vref) * max_val) #2

def to_moisture(adc_value, dry=850, wet=400):
if adc_value >= dry: return 0
if adc_value <= wet: return 100
return 100 * (dry - adc_value) / (dry - wet)

print(f"{to_moisture(adc_read(1.5)):5.1f}%")

#1 ADC function takes in in the voltage, the number of bits, and the
maximum possible voltage.
#2 Conversion formula from analog to digital.

3.1.1 Key sensor characteristics

Selecting the right sensors for your digital twin is rarely as
simple as finding those that measure the parameters you're
interested in. You must understand the key characteristics that
determine how well a sensor will perform in your specific
environment and use case, and evaluate your sensor choice
against these.

e Temporal resolution refers to how frequently the sensor
can provide measurements. A manufacturing line might
need temperature readings every second, while a building’s
occupancy sensor might only need updates every few
minutes. Match the sampling rate to your system'’s
dynamics and decision-making needs.

e Measurement range and sensitivity defines the limits every
sensor operates within. A humidity sensor designed for
indoor use might fail in an industrial dryer where localized
humidity spikes beyond normal ranges. Similarly,



sensitivity determines the smallest change the sensor can
detect, which is important when monitoring small changes
and gradual trends.

e Accuracy is how close your measurement is to the true
value, while precision is how repeatable vyour
measurements are. A sensor might consistently read
22.3°C when the actual temperature is 25.0°C, so it is
precise but not accurate. For digital twins, you often need
both, but sometimes you can compensate for systematic
accuracy errors through calibration.

e Environmental tolerance refers to the constraints under
which your sensor operates. Industrial environments might
expose sensors to extreme temperatures, vibration, dust,
or corrosive chemicals. Outdoor sensors need
weatherproofing. Some environments require intrinsically
safe designs to prevent explosion risks, while others
demand non-contaminating sensors that won’t compromise
sample purity in pharmaceutical, food, or clean room
applications.

e Power consumption is the primary constraint that can
shape your entire sensing strategy. Wired power is not
always available, forcing you to trade off between power
and functionality. When considering battery power for
sensors, you will need to carefully consider factors such as
sampling rate and the cost of wireless communication to
minimize the operational costs of replacing batteries across
your sensor fleet.

3.2 Selecting the right sensors for your
digital twin

Choosing the right sensor involves more than matching
measurement type to physical parameter. A temperature
sensor that works perfectly in a home environment might fail in
an industrial setting, while a highly accurate sensor becomes
useless if it can’t communicate reliably with your digital twin



platform. Deciding what to measure, as well as how and when
to measure it, must be driven by the objectives you have
defined based on the decision-making improvements you aim
to achieve. Here are factors to consider when selecting sensors
for your digital twin.

3.2.1 Define what you’re measuring

Working backwards from the objectives of your digital twin,
start by identifying the specific physical parameter that best
indicates the condition you’re trying to monitor. This isn’t
always obvious, for example, equipment overheating might
manifest as elevated temperature, increased vibration, or
changing electrical current draw.

Once you’ve identified the right parameter, establish the
expected operating range. For my home’s irrigation system,
soil moisture typically varies between 20% (too dry) and 80%
(saturated), with optimal levels around 40-60%. Understanding
this range helps you select sensors with appropriate
measurement spans and avoid paying for unnecessary
precision.

Finally, consider the rate of change—how quickly does this
parameter fluctuate? Soil moisture changes gradually over
hours or days, so sampling four times daily provides adequate
coverage. In contrast, electrical power consumption can spike
within seconds when appliances turn on, requiring more
frequent sampling to capture these changes.

Standard questions to help define what you're measuring
include:

o What specific outcome or failure mode are you trying to
detect or prevent? Different failure modes require
monitoring different parameters. For example, bearing
failure in a motor might be detected through rising



temperature, increased vibration, or abnormal acoustic
patterns, each requiring different sensors and thresholds.

Which physical parameters change first when this condition
occurs? Early warning indicators give you time to plan
maintenance, order parts, and schedule downtime whereas
late-stage indicators only tell you when something has
already changed. In an HVAC system, refrigerant pressure
variations might signal compressor issues days before
temperature control degrades, giving maintenance teams
time to respond proactively rather than reactively.

How quickly does this parameter change during normal
operation? This determines your required sampling rate,
data storage needs, and the complexity of your analysis
algorithms. A wind turbine’s blade vibration might need
monitoring at thousands of samples per second to detect
bearing defects, while monitoring a building’s daily energy
consumption pattern requires only hourly readings.

How much historical data do you need to establish baseline
behavior? Without a proper baseline, you can’t distinguish
normal  variations from abnormal conditions. A
manufacturing line might require three months of
production data to understand typical variation patterns
across different products, shifts, and seasonal conditions
before anomaly detection becomes reliable.

What is the normal operating range for this parameter
under typical conditions? This defines the ranges of the
thresholds you will monitor. For instance, a commercial
freezer might normally operate between -18°C and -22°C,
so alerting at -15°C provides early warning of cooling
system degradation before product spoilage occurs at
-10°C.

What is the acceptable delay between a change occurring
and your digital twin being updated to reflect the change?
This drives not only your choice of sensors but the entire
architecture that will ingest and process the data from
them. A safety-critical pressure relief system might require



sub-second response times with edge processing, while
tracking monthly water consumption for billing purposes
tolerates daily updates transmitted over low-power
networks.

3.2.2 Consider the environment

The physical environment where your sensor will operate often
eliminates more options than any other factor. Start with the
basic indoor/outdoor distinction: outdoor sensors need
weatherproof enclosures (IP65 or higher), UV-resistant
materials, and wider operating temperature ranges—my garden
sensors must survive both 45°C summer days and wet winter
days. Industrial environments amplify these concerns when
sensors near manufacturing equipment must withstand
constant vibration that would destroy consumer-grade devices
within days, while dust can wreak havoc on sensitive
electronics. Mounting and access is also important to consider;
a sensor in a cramped ceiling space needs to be reliable
enough to minimize maintenance visits, while one mounted on
vibrating equipment needs secure attachment and possibly
shock-dampening mounts. In figure 3.2 I use the floorplan of
my home to plan the precise placement of my sensors indoors
and outdoors.

NOTE

IP65 refers to an ingress protection code of 65, which
indicates how well a device is protected against water and
dust. The first digit represents solid particle protection, with
6 indicating it is protected against ingress of dust, whilst the
second digit represents liquid ingress protection, with 5
indicating it can withstand powerful jets of water in any
direction.
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Figure 3.2 Using a floor plan to select the optimal placement of sensors
based on what parameters need to be measured, as well as the location of
power outlets and taps. The local coordinates of each sensor relative to the
origin point (close to the compass symbol at the top right of the image) in
meters are also shown.

3.2.3 Determine required performance

Match sensor capabilities to what your digital twin actually
needs to deliver value and resist the urge to specify the highest
performance possible. For accuracy, ask yourself what
decisions the data will drive. My home’s temperature sensors
only need £0.5°C accuracy because my HVAC system can’t
control more precisely than that anyway. Paying extra for
+0.1°C accuracy would be wasting money on precision I can’t
use. Similarly, sampling frequency should match your system'’s
dynamics and control capabilities. While my pool pump could
report power consumption every second, I only sample hourly
because that’s sufficient to detect when it’s running and
calculate daily energy usage. More frequent sampling would
just drain batteries faster without enabling better decisions.
Latency, the delay between measurement and availability in



your digital twin, matters most for real-time control. My
irrigation system can tolerate long delays because soil moisture
changes slowly, but a leak detection system needs sub-minute
response to prevent damage. Understanding these
requirements early prevents both over-engineering (expensive
sensors generating data you can’t use) and under-engineering
(missing important events because you sampled too slowly).
Table 3.1 shows examples of when higher performance sensors
might be required.

Table 3.1 A comparison of situations where higher performance is required
across the dimensions of accuracy, sampling rate, and latency, and when
more moderate performance will do.

Dimension

High performance required

Moderate performance sufficient

Accuracy

Leak detection: £0.01

L/ min.

Small flow changes indicate
leaks; false positives waste
investigation time, false
negatives allow damage

HVAC control: £0.5°C

System can’t control more precisely;
+0.1°C accuracy would waste money
on unused precision

Sampling
rate

Vibration monitoring:
10,000 Hz

bearing defects create high-
frequency signatures; slower
sampling misses critical
failure indicators

Energy monitoring: 1
sample/hour

Sufficient to detect when equipment
runs and calculate daily usage; faster
sampling drains batteries without
enabling better decisions

Latency

Pressure relief: <1 second
Safety-critical response to
prevent equipment damage
or injury requires immediate
action

Soil moisture: minutes to hours
Changes occur slowly; irrigation
decisions tolerate significant delays
without impact

3.2.4 Evaluate practical constraints

Real-world constraints often dictate sensor choices more than
technical specifications, with power availability usually being
the primary constraint. Mains-powered sensors can transmit



continuously over WiFi, while battery-powered locations
demand low-power wireless protocols and infrequent
transmissions. Most industrial sites require certified electricians
for any powered installation, adding hundreds of dollars of
labor cost to each sensor. Maintenance access is equally
important when considering battery-powered devices. A sensor
located somewhere difficult to access needs a multi year
battery life to minimize maintenance costs. My home digital
twin takes a typical approach of investing in quality sensors for
important measurements (power monitoring) while using $20
consumer sensors for less essential data (spare bedroom
temperature). It is important to understand your constraints
before purchasing incompatible equipment.

3.2.5 Plan for integration

Before purchasing any sensor, verify it will actually work with
your planned infrastructure. Check specific requirements like
2.4GHz vs 5GHz bands, WPA2 vs WPA3 security for WiFi and
whether your chosen platform supports the device’s specific
implementation. Data format mismatches cause significant
frustration and extra work. For example, some sensors output
raw ADC values requiring complex decoding, while others
provide pre-formatted JSON that integrates immediately. My
sensors each use different payload formats, requiring custom
decoders for every device type, which is manageable for a few
sensors but a maintenance nightmare at scale. Some sensors
require regular calibration, like my pool pH sensor which must
be calibrated monthly using a buffer solution. Understanding
these integration requirements before deployment prevents the
scenario of having perfectly functional sensors that can’t talk to
your digital twin platform or produce data in unusable formats.

3.2.6 Choose sensors for a home digital twin

Based on my objectives to reduce energy and water
consumption, I need to identify which physical parameters can



provide actionable insights. This means thinking beyond
obvious measurements like "electricity usage" to understand
what specific data enables optimization decisions. This led me
to choose the range of sensors shown in table 3.2.



Table 3.2 Sensors I have chosen to capture the physical environment for
representation in my home digital twin.

Measurement Location Sensor Model Power Ea'igate

Current flow (total) Meter box II\D/Iowg:rPaI Smart Meter Battery | 1 min
onitor

Current flow Power Netvox R809A & Mains 30 min

(applicances) outlets Milesight CT101

Water flow (mains) Meter Dragino AISO1-LB Battery | Daily

Water flow (garden) gaprsden Dragino SW3L Battery | 5 mins

Water flow Laundry YF-S201 + ESP32 Mains 5 mins

Water storage gar:rllwater Dragino DDS20 Battery | Daily

Indoor temperature & | Indoor Dragino LHT52 Battery | 30 mins

humidity rooms

Indoor environment Living area | Milesight AM319 Mains 10 mins

Outdoqutemperature Outdoors Dragino LHT65S Battery | 30 mins

& humidity

Occupancy Living area $86a| board with edge Mains Continuous

Water quality Pool Manual pH meter Battery | Daily

I have selected sensors from a number of different
manufacturers, in different form factors. With these sensors, I




can not only target specific appliances and taps, but I can also
measure parameters that will influence electricity and water
usage, such as the level of my rainwater storage tanks, and
environmental parameters that impact power use such as room
occupancy, temperature, and humidity. Figure 3.3 shows my
most comprehensive sensor that allows me to measure a total
of nine environmental parameters with one device.

08/10/2025 07:00 &
COe TS A -
=T T Airborne

EEL| AR L| LI : particles

1R00 i
|I| m Lie =1 |
{0 pem —

TUOC D T Ozone level

& . o
85 Bde| senal cuuis
@Milesight\ T Light level

Ta

Carbon dioxide .—————
level

Temperature
and humidity ™—_____

Light sensor——

T Volatile organic

PIR mation compounds

_—
sensor T

Figure 3.3 An environmental sensor that measures nine different
parameters, displaying some on an E Ink display, as well as transmitting
them over LoRaWAN.

Sometimes you will not be able to find the sensor that you
need available to purchase off the shelf and will need to build
your own. In appendix B, I show an example of how you can
build an IoT sensor that measures temperature, humidity, and
soil moisture using low cost electronic components.

3.3 Connecting sensors: communication
technologies

Once you've established what types of sensors you require, you
will need to get their data to your digital twin platform. Moving
data between two points becomes surprisingly complex when



multiplied across dozens or hundreds of sensors in diverse
locations. The choice of communication technology significantly
impacts your sensor selection, battery life, deployment cost,
and system reliability. A temperature sensor might cost $20,
but if it requires a $1,000 cellular modem and $10 monthly
service fee to transmit its data, it might be beyond your
budget. Conversely, choosing a low-cost communication
protocol might limit you to sensors from specific manufacturers
or require deploying your own network infrastructure. These
dependencies can have wide ranging impact; selecting
LoRaWAN for its long range and low power might mean
accepting lower data rates, which in turn limits you to simple
environmental sensors rather than vibration monitors that
generate rich frequency data. The communication landscape
has evolved dramatically over the past decade, moving from
expensive proprietary protocols to a rich ecosystem of
standards-based options. This abundance creates its own
challenges of how to choose from the available range of viable
technologies.

3.3.1 Understanding the communication landscape

Wireless communication technologies exist on a spectrum,
trading off data rate, range, and power consumption, as shown
in figure 3.4:
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Figure 3.4 Wireless communication technology exists on a spectrum of data
rate, transmission range, and cost. Higher data rates work over shorter
distances and require more power, whereas longer range communication
typically means accepting lower data rates.

No single technology excels at all three since the laws of
physics impose fundamental tradeoffs. High data rates require
more power and work over shorter distances whereas long
range communication at low power means accepting lower data
rates.

3.3.2 Short-range technologies (<100m)

When sensors are relatively close to your data collection point
and you need frequent updates or rich data, short-range
technologies excel. The three dominant short-range
technologies shown in table 3.3 each evolved to solve different
problems. WiFi emerged from the need for high-speed
computer networking and is fast and ubiquitous, but power-
hungry. Bluetooth Low Energy (BLE) is the opposite, optimizing
for battery life at the expense of range and throughput. Zigbee
and Thread (together with the Matter interoperability standard)



occupy a middle ground, designed specifically for sensor
networks that need to scale beyond simple point-to-point
connections by adopting a mesh-based network topology.

Table 3.3 Popular short-range wireless communication technologies
compared on data rate, range, and power draw.

Data Typical | Power Infrastructure Home use
Technology
rate range | draw needs case
High Indoor
- 54Mbps- | 30- I environmental
WiFi 1Gbps+ | 100m (constant | Existing router sensors near
power)
outlets
10- Considered
Zigbee/Thread | 250kbps Low Dedicated hub but not
100m
selected
10- Electricity
BLE 2Mbps 30m Very low | Smartphone/hub | meter pulse
counter

3.3.3 Long-range technologies (>100m)

When sensors are scattered across large areas, lack access to
wired power supplies, or there is significant interference (for
example, structural steel in an industrial plant), long-range
technologies become essential. Table 3.4 provides a
comparison of wireless communication technologies that have
ranges in excess of 1000 meters. Each of these technologies
makes different tradeoffs to achieve their extended range.
LPWAN devices have a range of kilometers on battery power,
but data rates are measured in bits per second. Cellular
operates on licensed frequencies with guaranteed service levels
but requires monthly subscription fees, while low-earth orbit
satellite services like Starlink have made communication
practical in the middle of the ocean, though at a premium
price.



Table 3.4 Popular

long-range wireless communication technologies

compared on data rate, range, battery life and cost model.

Technology Data rate Typical E§attery Cost Home use case
range life model
LPWAN 0.3- 2-15km 5-10 One-time | Selected for indoor
(LoRaWAN) | 50kbps urban years hardware | and outdoor sensors
100kbps- | National | 6-12 Monthly Too expensive for my
Cellular
50Mbps coverage | months | fees needs
High
Satellite 25Mbps+ Global Hours monthly Unnecessary for a
coverage fees suburban home

3.3.4 Choosing the right technology

In my home deployment, the choice became clear once I
mapped out sensor locations. Indoor sensors near power
outlets could leverage my existing WiFi network; there was no
need for new infrastructure where I had solid coverage. The
electricity meter presented a unique challenge since I could not
find an affordable LoRaWAN sensor. Instead, I used a low cost
pulse counter that syncs with a smartphone app via BLE,
making it the pragmatic choice despite requiring manual data
export to transfer the data to my collection hub. Given its
popularity in home automation, I seriously evaluated Zigbee
for its mesh networking capabilities, but ultimately decided that
deploying a separate Zigbee network made little sense when
LoRaWAN could handle all my battery-powered sensors in the
required range with a single gateway. Figure 3.5 shows a
LoRaWAN flow meter sensor that I have installed on one of my
external taps.
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Figure 3.5 A battery powered LoRaWAN flow meter installed on a garden
tap and sending data to my home digital twin.



When looking to select a specific communication technology for
the sensors that will feed data to your digital twin, you should
consider the following factors:

Coverage requirements—the distance between sensors and
gateways, and what technology will support that distance.

Power constraints—whether you have access to mains
power or if batteries are a better choice, and how long
batteries might last.

Data requirements—how much data, and at what rate, will
you need to communicate.

Infrastructure—what already exists versus what you will

need to deploy.

e Total cost—including devices, gateways, and ongoing
service fees.

Given that most of the sensors I have chosen communicate
over LoRaWAN, I needed to configure a private LoRaWAN
network. Appendix A goes into the details of how I have done
this, using a consumer gateway (the Dragino LPS8N indoor
gateway) and leveraging a managed cloud service (AWS IoT
Core for LoRaWAN) to provide a managed network server.
Where I have access to mains power, I use WiFi for
communications. This creates a hybrid home sensor network
(figure 3.6) where most sensors are battery-powered and
communicate over LoRaWAN, while mains-powered sensors in
WIiFi coverage areas communicate directly with the message
broker.



Message Broker
B

—>» WiFi sensor data flow

---------» LoRaWAN sensor data flow

LoRaWAN Network Server
¥.

Cloud environment

On premises - /
[ WiFi Router ]
A
= 2.5 Ghz
[ LoRaWAN Gateway ] Short Range
El | Mains power
915 MHz . *
Long Range
Battery Power .
LoRaWAN Sensor 1 LoRaWAN Sensor 2 WiFI Sensor 1

Figure 3.6 A hybrid sensor network that uses LoRaWAN and WiFi to send
electronic sensor readings to a common message broker.

NOTE

You may rightly be wondering why not select Home Assistant
combined with Zigbee sensors for a home digital twin? Whilst
this would be the right choice for a purely home automation
project, I will demonstrate technologies that can be extended
to industrial, agricultural, and other use cases.

3.3.5 Universal data transport architecture

The data that comes from IoT sensors, whether it is carried
over WiFi, LoRaWAN, or other communication technologies,
must then be transported to a digital twin application by an
application layer protocol that defines the interface between
the application and the underlying network over which the data
travels (with all the complexities of physical network



communication abstracted away). Message queuing telemetry
transport (MQTT) is an open source, lightweight messaging
protocol that has become the default application protocol for
IoT. MQTT uses a loosely coupled, publish/subscribe
communication model, which is highly flexible and adaptable
and decouples devices and applications.

I use MQTT to transport data from all the sensors that I am
integrating to a digital twin application server, which serves as
a collection hub for all incoming data. It is not only data from
networked electronic sensors that can be transported over
MQTT—I also use it to transport manually collected data into
my digital twin.

Whatever the source of data, the transformation to MQTT
involves several steps:

1. Protocol translation—convert from sensor-specific protocols
to MQTT messages. The managed network server from
AWS handles this conversion to MQTT for LoRaWAN
SEensors.

2. Data organization—assign meaningful hierarchies for data
organization.

3. Payload standardization—transform diverse formats into
consistent structures.

4. Metadata preservation—maintain context about data origin

and quality.
MQTT IN PRACTICE

Traditional point-to-point communication creates rigid
dependencies between systems. If a temperature sensor needs
to send data to a monitoring dashboard, a database, and an
alerting system, it must know about and maintain connections
to all three consumers. When requirements change, such as
adding a new analytics service or removing an old system, the



sensor’s code must be modified. This tight coupling makes it
difficult to extend and evolve such communication systems.

NOTE

In publish-subscribe systems, a topic is simply a named
channel or category that acts as the routing address for
messages. Publishers send messages to specific topics
without knowing who will receive them, while subscribers
express interest in topics without knowing who will send
them.

MQTT'’s publish/subscribe pattern eliminates these
dependencies through the abstraction of a topic, where
publishers and subscribers do not need to be aware of each
other. The MQTT broker acts as an intelligent middleman,
routing messages between parties that remain unaware of each
other’s existence.

For my home digital twin, MQTT provides a unified message
bus that can carry data from all sensing sources into my digital
twin application. Sensors can be added and removed at any
time without impacting consumers of their data.

e LoRaWAN sensors will publish data to MQTT via the
LoRaWAN gateway and the AWS IoT Core for LoRaWAN
managed network server.

e ESP32 sensors connected by WiFi will publish data directly
to MQTT.

e Data from sources other than networked electronic sensors
will be captured, transformed, and published to MQTT.

It is important to design a functional topic hierarchy within

MQTT to support logical subscription selections and support the
future growth of your sensing network. A hierarchical structure
that reflects the physical structure of your asset enables you to



use wildcards in your subscription patterns. In my home digital
twin, I adopt the topic naming convention shown in the
following figure, with four topic levels.

Topic level separator

e

location / measurement type / place / logical sensor id

| [ |
Logical sensor identifier /

Topic level

Which leads to topics named as follows:

home/electricity/electricitymeter/power_meter_1
home/electricity/washingmachine/power_meter_2
home/electricity/refrigerator/power_meter_3
home/water/washingmachine/power_meter_4
home/water/washingmachine/flow_meter_1
home/water/garden/flow_meter_2
home/environment/bedrooml/temp_sensor_1
home/environment/bedroom2/temp_sensor_2
home/environment/outdoors/temp_sensor_3
home/environment/indoors/moisture_temp_sensor_1

This enables me to use powerful subscription patterns with
MQTT wildcards—for example, subscribing to nhome/water/#
captures all water flow readings. By adopting logical sensor
identifiers in the topic naming rather than physical sensor
identifiers, I can switch out sensor hardware without having to
rename any topics, and I can use the same topics regardless of
whether the data travelled via LoRaWAN or WiFi.

TRY IT OUT: SEND AND RECEIVE DATA ON MQTT

You can try out publishing data to an MQTT topic and
subscribing to messages from MQTT with the code shown in



listing 3.2, which uses a public MQTT broker to send a dummy
temperature reading as if it were coming from a temperature
sensor in my bedroom. The program subscribes to the same
topic to read the published data to the console. Since
test.mosquitto.org IS @ public MQTT broker, if you change the
code to subscribe to ALL topics and not just the one that you
publish to (in MQTT, you can subscribe using the multi-level
wildcard # to get data on all topics), you will see a deluge of
messages of all types that people all over the world are
publishing to this free broker.



import paho.mqgtt.client as mqgtt
import time

BROKER = "test.mosquitto.org" #1
TOPIC = "home/environment/bedrooml/temp_sensor_1"

def on_message(client, userdata, message): #2
print(f"Message received: {message.payload} on topic {message.topi

C}II)

client = mgtt.Client(mgtt.CallbackAPIVersion.VERSION2) #3
client.on_message = on_message
client.connect(BROKER)

client.subscribe(TOPIC) #4
client.loop_start() #5

for i in range(5): #6
temp = 20 + i
client.publish(TOPIC, json.dumps({"temperature": temp}))
time.sleep(2)

client.loop_stop() #7
client.disconnect()

#1 Use a free public MQTT broker.

#2 Define the message handler to run when a message is received.

#3 Create a new MQTT cleint, define the message handler, and connect to
the broker.

#4 Change this to be &quot;#&quot; to see all data on this broker.

#5 Start the client listening.

#6 Publish 5 messages to the topic.

#7 Cleanup.

3.4 Real world data collection strategies

Not every aspect of the physical world can be captured by
electronic sensors. Despite the proliferation of IoT devices and
ever-decreasing sensor costs, significant gaps remain between
what we need to measure and what can be practically
automated. Cost, technology limitations, and practical



constraints often require combining automated sensing with
manual data collection and third-party data sources to create a
complete picture of your physical system. In my home digital
twin, fully automating every measurement would cost
thousands of dollars and require extensive modifications to
existing infrastructure. Industrial digital twins face similar
trade-offs at larger scales: a chemical plant might have
thousands of manual gauge readings collected during operator
rounds, while a smart city might rely on citizen-reported issues
to supplement its sensor network. The key to success is to
strategically combine different data collection methods based
on the value of the information, the cost of automation, and
the required update frequency. High-value, rapidly changing
parameters justify expensive automated sensing, whereas
stable parameters that change slowly can rely on periodic
manual collection. Environmental conditions affecting your
system may be better sourced from external providers than
duplicating measurement infrastructure. By thoughtfully mixing
these approaches, you can build a digital twin that delivers
insights without breaking budgets or requiring impractical
deployments.

3.4.1 Edge processing

Rather than transmitting raw sensor data to remote servers for
analysis, edge devices perform real-time processing locally,
extracting meaningful insights and transmitting only relevant
information. This approach dramatically reduces bandwidth and
power requirements and can enable autonomous decision-
making even when network connectivity is intermittent or
unavailable. My main water meter provides a perfect example
of where edge processing is valuable in sensing the real world.

EXAMPLE: ANALOG METER READING

I can convert my water meter from analog to digital by taking
a photograph of it and using OCR to extract the current



reading. The challenge, shared in many real world scenarios, is
that the use of low power, low bandwidth, long range battery
powered sensors means that transmitting every image to the
cloud for processing is often not feasible.

The solution I have put in place is to deploy a camera that can
run a machine learning model on the sensor device itself to
extract the reading from an image, and to transmit only this
reading to the cloud. The camera, shown in figure 3.7, uses
LoRaWAN to communicate and has a range that allows me to
mount it on my water meter on the street (200 meters from
my communication gateway), powered by a battery that will
last over a year. Processing the camera image to extract the
digits reduces a 100KB image to just a 10 byte reading, a
10,000x reduction in transmission size. I can still configure the
sensor to periodically send the raw image (it breaks it into
smaller data packets for transmission) so that I can verify the
edge processing.



) orARGINO

LoRaWAN Al Image Sensor
Model: AIS01-LB

!
okin

EUIL AB4O41THASSCATAR

Figure 3.7 An edge AI camera installed on my main water meter and
sending data to my home digital twin



3.4.2 When electronic sensing isn’t enough

The limitations I encounter in building my home digital twin
mirror challenges found in industrial deployments at every
scale. Whether you’re monitoring a single home or a sprawling
manufacturing facility, you’ll face the same constraints,
including that some measurements are too expensive to fully
automate, some equipment lacks sensor interfaces, some data
is locked in proprietary systems, and some parameters require
human observation or interpretation. The difference lies not in
the nature of these challenges but in their magnitude—an
industrial plant might have thousands of analog gauges instead
of one, or deal with vendor lock-in across dozens of equipment
suppliers rather than a single utility company. Understanding
these constraints through simple home examples helps you
recognhize and plan for similar situations in more complex
environments:

e Cost constraints—a comprehensive electrical monitoring
system with current transformers on every circuit would
cost thousands of dollars. Rather than make this
substantial investment, I monitor whole-home consumption
with a single optical sensor on my electricity meter,
supplemented by smart plugs or current transformers on
major appliances.

e Technology gaps—I am unable to attach a sensor to my
solar inverter to measure electricity production. The
inverter does host a simple API available over my local
home network that I can query for production data.

e Existing infrastructure—my smart electricity meter collects
detailed consumption data every 30 minutes, but my utility
only provides daily summaries through their web portal.
The detailed data exists, but isn't accessible through any
API.

e Complex measurements—pool water chemistry requires
measuring pH, chlorine levels, alkalinity, and other
parameters. Automated sensors for all these



measurements would cost more than my entire digital twin
project.

EXAMPLE: ELECTRICITY MONITORING IN THE HOME

Fitting my home out with automated electrical monitoring on
every circuit is prohibitively expensive for the objectives of my
home digital twin so I have fitted an optical pulse sensor to my
electricity meter that records much finer grained data but only
transfers the data to my phone. To ingest this data into my
digital twin, I must export the data from my phone as a CSV
file, and import it to my digital twin. Figure 3.8 shows an
example of daily consumption data available to me from my
electricity utility via a web portal compared to the data that is
available from the new sensor, transmitted to my phone. Notice
that my provider portal data is delayed by two days, making it
impossible to make meaningful data driven decisions.
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Figure 3.8 The electricity consumption data that I currently have available
from my provider on the left, compared with the fine grained data I will
obtain with an optical sensor, right.

3.4.3 Manual sensing strategies
Manual data collection becomes valuable when automated

sensing is impractical, too expensive, or when human
observation adds important context. The key to successful



manual sensing is to make manual collection systematic and
integrated with your digital twin.

EXAMPLE: POOL CHEMISTRY MONITORING

Electronic pool chemistry monitors cost thousands of dollars,
but simple test kits provide accurate measurements for under
$50. Here's how I will integrate manual testing into my digital
twin:

1. Standardized process. To ensure consistency, I manually
test the water at the same time each day, from the same
location, following an identical procedure.

2. Digital recording. 1 built a simple mobile interface that
allows me to enter readings immediately after taking
measurements.

3. Contextual data. The manual process lets me record
qualitative observations like water clarity and debris level
that sensors would miss entirely.

This approach will reveal patterns that would be invisible
without systematic collection, such as a rise in pH on hot sunny
days, changes in chemistry after heavy rainfall and will allow
me to optimize the runtime of the filter seasonally to reduce
electricity usage. Listing 3.3 shows how easily you can create
an interface to capture manual data readings and transmit
them to an MQTT broker for processing.



<html>

<body>
<input type="number" id="phValue" placeholder="pH value">
<button onclick="publish()">Send</button>

<script src="https://cdnjs.cloudflare.com/ajax/
libs/aws-sdk/2.1400.0/aws-sdk.min.js"></script> #1
<script>
AWS.config.update({ #2
region: REGION,
credentials: new AWS.CognitoIdentityCredentials({
IdentityPoolId: IDENTITY_POOL_ID
})
B

const iot = new AWS.IotData(
{endpoint: MQTT_ENDPOINT}); #3

function publish() {
iot.publish({ #4
topic: 'home/water/pool/chemistry_sensor_1"',
payload: JSON.stringify({ph: phValue.value})
}, (e,d) => console.log(e||'Sent'));
}
</script>
</body>
</html>

#1 Import the AWS SDK for Javascript.

#2 Configure the AWS SDK with your region, and the identifier of your
Cognito identity pool.

#3 Instantiate the IoT data client.

#4 Publish the value entered into the input field to the pool water
chemistry MQTT topic.

MAKING MANUAL COLLECTION SUSTAINABLE

The biggest challenge with manual data collection is the human
factor of ensuring consistent and accurate collection. If the
process is difficult or tedious, or the value of the collecting the
data is not apparent, it is likely to be abandoned. To create a



sustainable manual data collection process, keep the following
in mind:

e Simplify the data collection process. Reduce the friction
taken for manual data collection by providing an interface
that is easy to use and is available in the field where the
measurement is taken. Try to eliminate the need to
transcribe data by providing a mobile interface where it can
be entered directly as the measurement is taken rather
than writing it down and then having to input it when back
in the office.

e Provide immediate value. Providing feedback during the
data entry, through alerts when readings are out of normal
ranges, or showing trends makes the benefits of
performing the data entry tangible and motivates users to
continue with the process.

e Automate reminders. Consider providing useful automated
reminders that prompt users to perform manual collection.
If you can make these smarter than just a daily reminder—
for example by taking into consideration context such as
the amount of time since the last test, or abnormal
weather that may impact levels, all the better.

e Design for scale from the start. When dealing with
hundreds of collectors taking thousands of readings, the
challenges multiply. Build in quality controls such as
validation rules, duplicate detection, and automated data
quality checks to catch errors early. Consider implementing
role-based access and workflows that allow supervisors to
review and approve submissions before they enter the
main dataset. Use dashboards that give managers visibility
into collection completion rates across teams, identifying
gaps or patterns that need attention.

3.4.4 Integrating third-party data

Many physical parameters affecting your system are already
being measured by others. Weather services track



temperature, humidity, rainfall, and solar radiation while
utilities monitor grid conditions and traffic services track road
conditions. The challenge can be accessing and integrating this
data. In my digital twin I integrate with an external weather
data source to obtain forecast data, and with the water
corporation to obtain data about water restrictions, as well as
the state of the metropolitan water supplies.

3.5 Data processing

Sensors produce raw data streams that need processing,
decoding, and protocol transformation before they are
transported into your digital twin. We will deal with data
ingestion and storage in chapter 4, but prior to ingesting the
data, we must decode it from sensor specific formats and
protocols keeping in mind the unique characteristics of IoT
sensor data.

3.5.1 Understanding IoT data characteristics

There are distinct attributes of the sensor data originating from
IoT devices that set it apart from traditional data, impacting
how it's handled in digital twin applications. These key
characteristics can be summarized in the following way.

VOLUME

IoT devices may generate vast quantities of data, from
continuous sensor readings, to extensive log files, requiring
scalable storage and processing solutions.

VELOCITY
Data is produced and transmitted at high speeds, often in near

real-time. This demands rapid processing to keep digital twins
continuously updated and responsive. Often the velocity of



data is variable requiring a processing architecture that can
scale elastically.

VARIETY

IoT data comes in diverse formats and structures, originating
from various sensor types and systems. Every sensor
manufacturer has their own data format. Some send human-
readable JSON:

{"temp": 23.5, "humidity": 45.2, "battery": 3.2}
Others pack data into binary formats to save bandwidth:

06 eb 02 9d 7f ff 01 68 62 81 69

Even identical sensors might output differently based on
firmware versions or configuration. My sensor deployment uses
10 distinct data formats, each requiring specific handling. This
necessitates flexible integration and data modeling approaches.

VERACITY

The accuracy and trustworthiness of IoT data can be
inconsistent, subject to sensor errors, transmission issues, or
device failures. Environmental factors affect sensor accuracy—
my outdoor temperature sensors read high in direct sunlight.
Occasionally my indoor temperature sensor produces an
impossible value of -99°C indicating a malfunction that I must
handle.

VALUE

While the ultimate goal is to extract meaningful insights and
actionable intelligence from raw data the value can vary
dramatically. My soil moisture sensors show noise-level
fluctuations between actual watering events. This low value



density means processing must extract signal from noise,
identifying genuinely significant changes while filtering
meaningless variation.

3.5.2 Message decoding

Sensors transmit data in different formats, using different
encoding and protocols that must be decoded and transformed
into a format that can be ingested, stored, and processed by a
digital twin application. This requires some compute to run to
perform the decoding. Since the volume and velocity of sensor
data can he highly variable, it makes sense to use serverless
compute for message decoding. In my home digital twin I use
AWS Lambda functions that activate only when messages
arrive, eliminating idle compute costs. For my home digital twin
processing approximately 50,000 messages monthly, this
translates to mere dollars in compute costs versus hundreds
for an always-on server to do the same.

NOTE

AWS Lambda is a serverless computing service offered by
AWS that allows you to run code without provisioning or
managing servers. You provide code to run and Lambda
executes your code in response to events, managing all
underlying compute resources, including server and
operating system maintenance, scaling, and capacity
provisioning. Microsoft’s Azure functions and Google Cloud’s
cloud functions provide similar serverless compute
functionality.

Figure 3.9 shows the architecture of the sensor data collection
hub, where each sensor publishes data to an MQTT topic, and a
single message decoder function subscribes to all sensor data
topics, and is able to decode their payloads.



/ MQTT Topics \

home/environment/bedroom1/ftemp_sensor_1

Datato
home/water/laundry/leak_sensor_1 TZ;SSSE P Ecgdgr |:> ingestion
BTG and storage

Data
from
Sensors

‘ homelwater/gardenfflow_meter_1

2

A single Lambda function handles

decoding of all message types

Figure 3.9 The sensor data collection hub architecture where messages
from multiple types of sensor are collected, decoded, and routed for
storage.

EXAMPLE: DECODING LORAWAN PAYLOADS

My message decoder Lambda subscribes to all MQTT topics
that data is published to by sensors, and implements a
decoding function for each type of message received. Consider
my LHT52 indoor temperature and humidity sensors distributed
around the house. When the one in the master bedroom
transmits data, the following Base64 encoded hex string is
received on the MQTT topic named
home/environment/bedrooml/temp_sensor_lin‘AVVS:

B1QDOH//AWhRYAQ=
This Base64 string decodes to 11 hex bytes as follows:

07 54 03 38 7f ff 01 68 51 60 04

NOTE

Baseb64 is a way to represent binary data (like images, files,
or any non-text data) using only text characters that are safe
to use anywhere—specifically 64 different characters: A-Z, a-
z, 0-9, plus two symbols (usually + and /).



According to the device manual, these 11 bytes contain
measured temperature and humidity in the first 4 bytes,
followed by data from an optional external temperature probe
and the measurement timestamp as shown in table 3.5.

Table 3.5 Format of the message received from a Dragino LHT52 indoor
LoRaWAN temperature and humidity sensor.

Bytes | Size | Content Format
0-1 2 Temperature Signed 16-bit, =100
2-3 2 Humidity Unsigned 16-bit, =10

4-5 2 External Temperature | Signed 16-bit, +100

6 1 External Sensor ID Unsigned 8-bit

7-10 |4 Unix timestamp Unsigned 32-bit

The first 2 bytes 0x07 0x54 represent a signed 16-bit
temperature value (signed means it can represent
temperatures both above and below 0°C, though it never gets
below freezing where I live!). Decoding requires bit
manipulation as shown in the function shown in listing 3.4.



def decode_sensor_message(base64_payload):
raw_bytes = baseb64.bb64decode(baseb4_payload) #1

temp_raw = struct.unpack('>h', raw_bytes[0:2])[0] #2
temperature = temp_raw / 100.0 #3

humidity_raw =
struct.unpack('>H', raw_bytes[2:4])[0] #4
humidity = humidity_raw / 10.0 #5

return {
"temperature': temperature,
"humidity': humidity,
'unit': 'celsius'

}

payload = "B1QDOH//AWhRYAQ=" #6

data = decode_sensor_message(payload)
print(f"Temperature: {datal'temperature']}°C")
print (f"Humidity: {datal'humidity']1}%")

#1 Convert Base64 to raw bytes.

#2 Extract temperature (bytes 0-1): signed 16-bit, big-endian.
#3 Convert to degrees Celcius.

#4 Extract humidity (bytes 2-3): unsigned 16-bit, big-endian.
#5 Convert to percentage.

#6 Example encoded payload from sensor.

This transformation serves multiple purposes:

e Decoding: converts binary data to human-readable values.

e Standardization: creates consistent JSON structure across
sensor types.

e Context addition: adds units and metadata not present in
raw data.

3.5.3 Sensor fusion

Real world sensor data is often noisy and uncertain. Each
sensor provides an imperfect view of the true state of the



system, and in a digital twin, relying on a single sensor can
lead to an inaccurate representation of the physical system.
Sensor fusion combines readings from multiple sensors to
estimate a more accurate and reliable representation of the
physical system.

One of the most widely used techniques for this is the Kalman
filter, which is an algorithm that provides an optimal estimate
of the system’s true state over time by continuously updating
predictions based on both model dynamics and new
measurements. It effectively smooths out noise and gives more
weight to reliable information as it becomes available.

In a digital twin of a smart building, for example, temperature
sensors distributed across a room may all report slightly
different readings due to calibration errors or local airflow
differences. The Kalman filter can fuse these readings to
produce a stable and accurate estimate of the true room
temperature.

EXAMPLE: FUSING MULTIPLE TEMPERATURE SENSOR
READINGS WITH A KALMAN FILTER

The Python code in listing 3.5 demonstrates how a simple
Kalman filter can be used to fuse readings from five noisy IoT
temperature sensors into a single, accurate estimate of the
true room temperature.



import numpy as np
import matplotlib.pyplot as plt

22.0 #1
50 #2

true_temp
timesteps

np.random.seed(42)

sensor_noise = [np.random.normal(®, 0.5, timesteps) for
sensors = [true_temp + n for n in sensor_noise] #2
measurements = np.mean(sensors, axis=0) #3

in range(5)]

est 20.0 #4

LO 0V TV X
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estimates = []

for z in measurements:
x_pred = x_est #5

P_pred = P + Q

K = P_pred / (P_pred + R) #6
x_est = x_pred + K * (z - x_pred)
P=(1-K) % P_pred

estimates.append(x_est)

plt.plot(measurements, label="Average Sensor Reading", linestyle="dotte
d")

plt.plot([true_temp] * timesteps, label="True Temperature", linestyle
plt.plot(estimates, label="Kalman Filter Estimate")

plt.xlabel("Time step")

plt.ylabel("Temperature (°C)")

plt.legend()

plt.show()

#1 Assume a constant real temperature of 22.

#2 Generate 50 readings for each of the 5 sensors, assighing random noise
to each reading.

#3 Calculate the average from each of the 5 sensor readings.



#4 Estimate uncertainty ( P), process noise ( Q), and measurement noise (
R)

#5 Prediction step.

#6 Update step.

Figure 3.10 shows the output of the code in lisiting 3.5,
plotting the true temperature, the mean of the five
temperature sensors, and the temperature estimated by the
Kalman filter at each time step. At each step, the filtered
estimate is closer to the actual temperature than the mean of
the sensor readings.

22,6 1 ------ Average Sensor Reading

True Temperature
21.8 A /
21.6

—— Kalman Filter Estimate
0 10 20 30 40 50

Time step

Temperature (°C)

Figure 3.10 Output of the simple Kalman filter running against five noisy
temperature sensors as shown in listing 3.5.

3.6 Scalability and device management

Each sensor that you deploy adds multiple management
dimensions that compound exponentially as your deployments
grow. Deploying the first ten sensors around my home was
easy, but as I add more sensors even in the small scale of my
home digital twin, managing them manually becomes
impossible. I need to keep track of which sensor is deployed
where, what version of firmware each is running, and when
batteries were last changed. The challenge of the type of large
scale IoT deployments required by an industrial scale digital
twin is in keeping sensors working reliably at scale. Following



are the challenges that you will face as you scale up sensor
deployments for your digital twin.

3.6.1 Battery management

Many battery-powered sensors promise multi-year operation,
but that assumes ideal conditions. In reality, batteries drain
faster in temperature extremes, with frequent transmissions,
or poor network signal quality. Without systematic monitoring,
the first indication of a dead battery is missing data only
noticed days or weeks later. In my deployment, I've
implemented battery voltage reporting in every sensor
message, allowing me to predict when batteries will run out
and replace them before they do (almost a meta digital twin of
the sensor network!). Industrial deployments often standardize
on specific battery types and implement replacement schedules
based on worst-case scenarios rather than manufacturer
estimates.

3.6.2 Firmware updates

Security vulnerabilities, bug fixes, and feature additions require
firmware updates throughout a sensor’s lifetime. The limited
bandwidth of LPWAN networks makes transmitting firmware
images challenging, battery-powered devices must manage
updates without draining power, failed updates can brick
remote sensors requiring expensive site visits, and
heterogeneous networks mean different update procedures for
each device type. My LoRaWAN sensors require updates during
maintenance windows, transmitting firmware in small chunks
over days, and maintaining rollback capabilities for failed
updates.

3.6.3 Physical asset tracking

Sensors transmit streams of data as soon as they are powered
on. Without any knowledge of where that sensor is, or what it



is measuring, that data stream is meaningless or misleading. I
maintain both logical locations (what the sensor measures),
and the physical location where each sensor is, combined with
photographs to show exact mounting positions.

3.6.4 Calibration drift

The edge processing camera I have installed on my water
meter requires careful and precise calibration to ensure the ML
model extracts the correct digits from the image. Any slight
movement on the camera mounting requires me to recalibrate
it. My swimming pool pH meter also requires regular calibration
using a solution of a known pH. Tracking and coordinating
calibration at scale requires careful management.

3.6.5 Security management

Each sensor you deploy represents a potential attack vector
into your network. Managing credentials, certificates, and
encryption keys becomes increasingly complex with scale. Keys
must be rotated periodically, certificates renewed before
expiration, and compromised devices quickly identified and
isolated. In appendix B, you can work through an example of
how AWS IoT Core uses TLS with X.509 certificates for mutual
authentication, securing communication between an IoT device
in my home, and the cloud.

3.6.6 Practical management strategies

The successful management of large sensor deployments
requires a systematic approach that includes the following
considerations:

e Automated monitoring—implement a system that tracks
the health of your sensor network based on factors such as
message frequency, battery voltage, and data quality
metrics and automatically alerts you of any anomalies. I



have implemented a monitoring system that alerts me
when a sensor does not transmit data on schedule.

e Standardization—just by limiting the number of
manufacturers and device types you need to manage as far
as possible can dramatically reduce management
complexity. I have standardized my indoor temperature
and humidity sensors on a single model that reduces my
complexity in managing firmware updates.

e Batch operations—if you are managing a large number of
sensors, design support for bulk operations. Whether
updating firmware, rotating security credentials, or
adjusting configuration parameters, the ability to apply
changes across device groups rather than individually
becomes essential at scale. This requires careful planning
of device grouping strategies whether by type, location,
criticality, or deployment date. Both AWS and Microsoft
offer cloud services for the management of large fleets of
IoT devices but my home digital twin has not yet reached a
scale where investing in a management strategy makes
sense.

3.7 Bringing it all together

The first four phases of a digital twin—collection, connection,
transportation, and processing—comprise the foundation that
bridges the physical and digital worlds. Figure 3.11 shows how
these phases work for my home digital twin.
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Figure 3.11 Complete sensing system architecture showing collect, connect,
and transport layers.

This architecture demonstrates an essential principle of real-
world digital twin implementations, that is no single technology
solution can address all sensing requirements. Successful
digital twins combine multiple approaches to updating their
digital representation of the physical world, each optimized for
specific requirements and the constraints of the real world.

3.7.1 The collect layer: diverse data sources

The collect layer encompasses all the methods we use to
capture information about the physical world. As figure 3.11
shows, this includes four distinct approaches, each addressing
different constraints:

e Electronic sensing—sensors measuring rooms, appliances,
and indoor plants capture environmental parameters
directly. These sensors vary in complexity from simple



temperature measurements to multi-parameter devices
monitoring air quality, occupancy, and soil conditions.

Electronic sensors with edge processing—the water meter
camera represents sensing couple with edge processing
where raw data (images) gets processed locally into
actionable information (meter readings). This approach
solves the bandwidth and power constraints that would
make transmitting full images impractical over LoRaWAN.

Manual data collection—the swimming pool represents
measurements that are more cost-effective to collect
manually than to automate. Pool chemistry testing with a
$50 digital meter provides the same accuracy as a $1,000
automated system, making manual collection the
pragmatic choice.

File-based integration—the electricity meter shows how
existing infrastructure often provides data in formats that
require special handling. My optical pulse sensor captures
detailed consumption data but only syncs to a mobile
phone, requiring CSV export and manual upload to
integrate with the digital twin.

This diversity reflects real-world constraints where cost,
technology limitations, and practical considerations prevent a
uniform approach to data collection.

3.7.2 The connect layer: protocol translation and
routing

The connect layer handles the complex task of moving data
from diverse sources to a common processing platform. Three
distinct communication paths demonstrate how different
technologies serve different requirements:

e LloRaWAN path—battery-powered sensors in indoor and

outdoor locations connect through a LoRa concentrator to a
gateway running LoRa Basics Station. This path prioritizes
range and power efficiency over data rate, making it ideal



for environmental sensors that transmit small amounts of
data infrequently. The gateway handles protocol
translation, converting LoRa radio signals to internet
protocols.

e WIiFi path—indoor sensors with access to mains power
connect directly through the existing WiFi router. This path
offers higher data rates and more frequent transmission,
suitable for sensors that need to provide richer data
streams or more responsive updates.

e Manual and file integration paths—both manual readings
and CSV file uploads come through a web application that
provides a user interface for data entry and file processing.
This application serves as a protocol translator, converting
human input and file formats into data that can be
published to the data collection hub.

The key is that all paths converge on the same transport
protocol, MQTT, regardless of how the data was originally
collected or transmitted.

3.7.3 The transport layer: unified data flow

The transport layer creates a unified data stream from diverse
sources using MQTT as the common protocol. This design
provides several important advantages:

e Protocol abstraction—the message decoder receives all
data through MQTT subscriptions, regardless of whether it
originated from a LoRaWAN sensor, WiFi device, manual
entry, or file upload and performs any message decoding
required. This abstraction simplifies application logic and
enables consistent data processing.

e Scalability—adding new sensor types or communication
methods requires publishing data to MQTT topics and
implementing any message decoding that is required. The
core application logic remains unchanged.



o Reliability—MQTT'’s publish/subscribe model provides built-
in features for handling connection failures, message
persistence, and quality of service guarantees that ensure
data reaches the application even when network conditions
are poor.

e Cloud integration—AWS IoT Core provides managed MQTT
infrastructure along with integration to other cloud services
for storage, processing, and analysis. The LoRaWAN
Network Server (LNS) and Configuration and Update Server
(CUPS) handle the complexity of managing LoRaWAN
devices while presenting a simple MQTT interface to
applications.

3.7.4 The processing layer: message decoding

Initial processing of sensor data is performed in the message
decoder function where device-specific data formats from
different types of sensors are converted to a common data
format before being routed for additional processing and
storage.

3.7.5 Data flow walkthrough

To understand how this architecture works in practice, let’s
trace a sensor reading from physical measurement to digital
twin application:

1. Physical measurement. As a garden tap is turned on and
water flows through a flowmeter, spinning the blades on
the impeller that have magnets attached to them. The
rotating magnets create a changing magnetic field that is
detected by the Hall effect sensor. This sensor outputs a
signal, typically a frequency, proportional to the flow rate.

2. Signal processing. The sensor’s electronics convert soil
conductivity to a digital moisture percentage, apply
calibration, and format the reading with timestamp and
device identifier.



. Communication. The sensor transmits a compact LoRaWAN
packet containing the moisture reading, device ID, and
metadata.

. Gateway processing. The LoRaWAN gateway receives the
radio signal, validates the message, and forwards it over
the internet to AWS IoT Core.

. Network server processing. The AWS LoRaWAN Network
Server authenticates the device, decrypts the message,
and publishes the data to an MQTT topic following the
naming convention home/water/garden/flow meter 1.

. Message decoding. The message decoder translates the
encoded message to a JSON object to be published for

ingestion and storage.

This flow of data from my garden tap, to its eventual
destination where it is decoded is shown in figure 3.12.
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Figure 3.12 The route travelled by a reading from the LoRaWAN flowmeter
attached to my garden tap.

This same flow applies whether the data originates from an
electronic LoORaWAN sensor or manual pool chemistry testing—
the architecture abstracts away the collection and
communication details to provide a consistent interface for
digital twin logic.

3.7.6 Architectural principles

Several key principles emerge from this architecture that apply
to digital twin implementations at any scale.



. Embrace diversity. Rather than forcing all data collection
into a single technology, design systems that can
accommodate multiple approaches based on practical
constraints.

. Converge on standards. While collection methods may
vary, standardize on common protocols and data formats
for transport and processing to simplify application
development.

. Plan for evolution. Desigh loosely-coupled interfaces that
can accommodate new sensor types and communication
methods without requiring changes to core application
logic.

. Balance automation and pragmatism. Automate what
provides clear value, but don’t hesitate to use manual
collection when it's more cost-effective or reliable.

. Design for failure. Assume that sensors will fail, networks
will be unreliable, and data will be missing. Build resilience
into every layer of the architecture.

This architecture has proven robust in my home digital twin
deployment, handling everything from brief network outages to
sensor failures while maintaining continuous operation. The
same principles scale to industrial deployments where the
stakes are higher but the underlying challenges remain the
same.

3.8 Summary

e Sensors are the bridge between the physical and digital
worlds, and update a digital twin with changes detected in
the real world.

e There are many types of sensors with different
characteristics of resolution, sensitivity and accuracy and
precision.

e Consider carefully what you need to measure, the

performance you require and practical constraints such as



where you must measure and what infrastructure you need
when selecting sensors for your digital twin.

Not every measurement that you need to take can be
economically or practically captured by electronic sensors
and manual sensing or integrating data that has been
sensed by third parties is a critical aspect of capturing
changes in the real world.

Sensors need to communicate their readings at differing
rates and distances and there are a variety of
communication technologies to choose from.

Sometimes you may not find the sensor that you require
available off the shelf and will need to build your own.

Operating sensors reliably at scale brings challenges
related to battery management, firmware updates,
calibration and physical asset tracking that can be
addressed by automated health monitoring,
standardization and documentation.



4 Data integration and management

This chapter covers

e The types of data typically used by digital twins

e Sources of data and how they are integrated into a digital twin
e Data storage solutions

e Managing data governance and compliance

Data is the lifeblood of a digital twin. Sensors, enterprise systems, external APIs, and
human inputs all generate data that must come together in a coherent way if the
twin is to reflect reality and provide actionable insights. Without careful attention to
how data is collected, cleaned, combined, and stored, a digital twin risks becoming
fragmented, inconsistent, or untrustworthy. Data integration and management are
therefore not just technical necessities but the foundation upon which a successful
digital twin is built.

We've examined how to construct digital representations of physical systems and use
sensors to gather data about system changes and feed it into your digital twin. Now
we look at the ways in which we can integrate data into the twin from the myriad of
places it may be produced, and how we can store and manage this data so that is
available in an accurate and timely manner for the twin to consume. Together, these
capabilities are what allow a digital twin to evolve from a collection of raw signals into
a trusted representation that supports decision-making, prediction, and optimization.

We begin by looking at the different types of data that are important in a digital twin.
You'll learn how each type plays a role in shaping the twin, what challenges they
pose, and how they can be combined effectively. By the end of this section, you will
be able to classify digital twin data sources, understand their unique characteristics,
and recognize how they influence integration strategies. This foundation sets the
stage for looking at how to store, transform, and govern this data so that your digital
twin remains consistent, reliable, and useful over time.

4.1 Types of data

Digital twins must handle diverse data types—both structured and unstructured—that
each bring their own characteristics, storage demands, and processing requirements.
Understanding these different data formats is essential when designing a digital twin
architecture capable of capturing, storing, and analyzing the complex information
needed to create accurate representations of physical systems.

4.1.1 Reference data
Reference data represents relatively static information about physical assets,

organizational structures, and system configurations. This data provides context for
interpreting operational measurements and includes asset hierarchies, device



specifications, maintenance procedures, organizational charts, and configuration
parameters.

Unlike operational data that changes continuously, reference data typically remains
stable for weeks, months, or years. A pump’s manufacturer, model number, and
installation date rarely change, while its operational parameters like flow rate and
temperature vary continuously. This stability influences both storage requirements
and update frequencies.

Reference data often originates from enterprise systems like ERP platforms, asset
management databases, and configuration management tools. The master data
management challenge lies in maintaining consistency across multiple systems that
may store overlapping information about the same physical assets.

4.1.2 Timeseries data

Timeseries data represents the continuous flow of measurements, observations, and
state changes that characterize system behavior over time. This operational data is
what allows a digital twin to keep its digital representation of the physical system
updated and accurate, enabling monitoring, trend analysis, and predictive modeling
that drives automated decision-making.

Timeseries data exhibits several key characteristics:

e Temporal ordering—Each measurement is associated with a precise timestamp
that establishes when the observation occurred, enabling analysis of trends,
sequences, and causality relationships.

e Temporal locality—Recent data typically requires more frequent access than
historical data, influencing storage and indexing strategies.

e High frequency and volume—Sensors produce continuous streams ranging from
thousands of measurements per second in industrial equipment to periodic
readings every few minutes in smart home applications. The continuous
generation of data by many sensors creates large volumes of data that require
specialized storage and processing approaches optimized for temporal queries
and aggregation operations.

e Immutable—Historical measurements represent facts that rarely change once
recorded, unlike transactional data that frequently updates.

Table 4.1 shows an example of timeseries data produced by a single sensor in my
home that measures a range of environmental parameters, showing the
characteristics that are typical of this type of data.



Table 4.1 Example of a timeseries data from a Milesight AM319 environmental sensor in my home.

Sensor Id Timestamp CO2 | Humidity | PIR PM10 | PM25 | Pressure | Temperature | TVOC
24e124710b423527 | 1749945584458 | 639 | 67 trigger | 6 5 1016.6 16.4 1.2
24e124710b423527 | 1749946183884 | 636 | 66.5 idle 4 4 1016.6 16.4 1.2
24e124710b423527 | 1749946784664 | 649 | 66.5 idle 5 5 1016.6 16.5 1.2
24e124710b423527 | 1749947383975 | 646 | 66.5 idle 5 5 1016.8 16.5 1.2

4.1.3 Unstructured and semi-structured data

Object data encompasses the vast array of unstructured and semi-structured content
that provides essential context and documentation for physical systems. This includes
technical manuals, maintenance procedures, equipment photographs, inspection
videos, engineering documents, and configuration files that don't fit into tabular or
temporal formats but remain important for comprehensive system understanding and
operational effectiveness.

Two examples of unstructured data that I will store in my home digital twin are
shown in figure 4.1. I store photographs of my water meter taken by an IoT camera
for validation and calibration of the machine learning model that runs to extract the
meter reading from the image, and appliance manuals and other documents that will
provide important context when I start to use Al to improve decision making.
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Figure 4.1 Examples of unstructured data stored in my home digital twin, with an image taken by an
IoT camera shown to the left, and a device manual on the right.

4.1.4 Spatial data

Spatial data represents geographic coordinates, physical layouts, and spatial
relationships that define where assets exist and how they relate to each other in 2D



and 3D space. While other data types describe what systems are doing or how
they’re performing, spatial data answers the question of where these activities occur.

Spatial data is indispensable for developing location-aware analytics, enabling
proximity insights, and supporting geographically optimized decisions. Its
applications vary by environment: within industrial facilities, it details equipment and
sensor placement; across smart cities, it maps the complex network of roads,
utilities, and building locations.

The complexity of spatial data varies significantly. Simple point coordinates require
minimal storage and processing, while complex 3D meshes or geographic information
system (GIS) data require specialized handling and substantial storage capacity.

Figure 4.2 shows a 3D mesh model of my home that I use in my home digital twin,
together with the local x,y coordinates of three sensors that I have deployed, as an
example of spatial data that is important in a digital twin. This 3D model serves as
the spatial framework that provides geometric context for all sensor data collected
throughout the house. By mapping sensor locations precisely within this 3D
representation, I can correlate environmental measurements with specific physical
spaces, room layouts, and architectural features.

5 Main water meter
™ (313, 21.99)

¥ ‘\_

; Person Frant garden tap

| Rear garden tap ©1,3) (0.875, 18.31)
i {0,829, 0.5) 1

5m radius

Figure 4.2 A 3D mesh model of my home that I will use in my digital twin with the coordinates
displayed for three sensors I have deployed to measure water usage around the home. Listing 4.2
shows how I can use the coordinates to find objects within five meters of the person.

One of the benefits of spatial data is that it gives you the ability to reason spatially
within your digital twin, just as you would in the real world. Looking at figure 4.2,
given the location of the person I have added to the model, I can use a simple
calculation to find sensors within a given proximity of their position. The code in
listing 4.1 provides an example of this by using local coordinates to find objects
within five meters of a given location using the Euclidean distance formula:

d((z1, 1), (z2,42)) = \/(mg — 1) + (v2 — 11)?



This code will return the rear garden tap which is 2.6 meters from the person.

my_pos = (0.1, 3) #1

sensors = [ #2

{"id": "flow_meter_1", "name": "Rear garden tap", "pos":
=(0.839, 0.5)},

{"id": "flow_meter_2", "name": "Front garden tap", "pos":
=(0.875, 18.31)},

{"id": "water_main_meter", "name": "Main water meter", "pos":

-(3.13, 21.99)},
]

dist = lambda p1, p2: ((p2[0]-p1[0]1)**2 + (p2[1]-pl[1])**2)*x0.5 #3

print("Sensors within 5m:")

[print(f"- {s['name'l}: {d:.1f}m") for s in sensors if (d := dist(my_pos,
=s['pos'])) <= 5]

#1 My position in the local coordinate system.

#2 Sensors, and their coordinates in the same reference system.
#3 Use the Euclidean distance formula to calculate the distance in meters.

TIP

The ability to spatially locate sensors and the data they produce becomes
significantly more important and useful the larger the area you model, and the
increased density of sensors you deploy.

4.1.5 Derived data

Derived data results from calculations, transformations, or aggregations applied to
raw data sources. This processed information transforms basic measurements into
actionable insights through feature engineering, statistical analysis, and machine
learning techniques.

FEATURES

Features are engineered variables that extract meaningful patterns from raw sensor
data. A temperature reading of 185°C becomes meaningful when transformed into
features like "temperature deviation from optimal”, "rate of temperature change", or
"time since temperature exceeded safe operating range". These features capture
relationships and contextual information that individual measurements cannot
express.

Figure 4.3 shows the relationship between raw data stores and features as used both
by a data scientist to train an ML model, and also for ML model serving.
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Figure 4.3 The relationship between a raw data store, derived data in a feature store, and the training
and serving of ML models.

EMBEDDINGS

Embeddings are dense, numerical vector representations that encode complex
patterns, relationships, and semantics from raw data into a compact, mathematically
comparable format. Unlike traditional features that extract specific measurable
attributes, embeddings capture semantic relationships within high-dimensional data.
Figure 4.4 shows a simplified example of how raw data might be represented as a 2D
vector, illustrating how sensor readings might be converted into a format where a
mathematical operation (distance between two points) corresponds to a real world
relationship.
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Figure 4.4 An example of how higher dimensionality raw data can be converted to a compact format
that encodes the similarity in operating parameters between Pump A and C, while showing the
difference in Pump B.

4.2 Data sources

Now that we have looked at the different types of data that are used by a digital twin
to create a digital representation of a physical system, we need to understand where
all this data comes from.

The data used in a digital twin is typically drawn from three major domains:
operational technology (OT) systems that monitor and control physical processes,
information technology (IT) systems that manage business operations and enterprise



data, and external sources that provide contextual information from beyond
organizational boundaries.

NOTE

While IoT devices increasingly blur the lines between IT and OT—particularly in
smart building and enterprise IoT applications—we consider them in the OT context
as they most commonly serve as the sensory layer for physical operations in
industrial digital twins. The key distinction is whether the devices are primarily
monitoring and controlling physical processes (OT) or supporting business
processes (IT).

4.2.1 Operational technology (OT) data sources

Operational technology refers to the hardware and software that directly monitor and
control physical devices, infrastructure, and processes commonly found in an
industrial environment and are important sources of data for industrial digital twins.

SCADA AND INDUSTRIAL CONTROL SYSTEMS

SCADA and DCS systems form the backbone of industrial data collection. These
systems continuously monitor equipment status, and process variables and control
the system via PLCs. For a digital twin of a manufacturing line for example, SCADA
provides critical timeseries data such as temperatures, pressures, flow rates, motor
speeds, and valve positions. This data is stored in a data store known as a process
historian that is designed to handle the large volume of timeseries data generated by
industrial processes over time and provide for analysis of past performance and
trends.

Given the high-frequency nature of SCADA data (often multiple readings per second),
most digital twins import and store this data locally rather than querying SCADA
systems or the process historian directly. Direct queries could impact SCADA
performance, and the query interfaces often aren’t designed for analytical workloads.
Instead, organizations typically deploy data collectors that subscribe to SCADA data
streams, buffer the data, and forward it to a database that maintains a copy of the
operational data known as a mirror. A digital twin typically sources data from this
mirror rather than directly from the process historian itself.

INDUSTRIAL INTERNET OF THINGS (IIOT)

You may be wondering where the 10T sensors that we have looked at fit into the
operational technology landscape. While IoT sensors enable increasingly extensive
monitoring of the physical environment, my LoRaWAN flow meter is not part of an OT
system. There are some key differences between OT systems and IoT sensors:

e Connectivity - OT systems traditionally operate on proprietary networks that are
isolated from the internet for security and reliability, while IoT devices normally
connect via the public internet.



e Core function - OT systems are designed for the direct, real-time management
and control of physical systems whereas IoT devices are primarily responsible for
data gathering, communication, and non real-time control.

Despite these differences the lines between OT and IoT are beginning to blur with IoT
devices increasingly being used to supplement operational decision making in OT
systems via the industrial internet of things (IIoT). IloT devices are connected
devices specifically designed for industrial environments and are characterized by
their rugged build, interoperability with legacy industrial control systems, and secure
design.

4.2.2 Information technology (IT) data sources

While OT systems provide the real-time operational data that drives digital twin
monitoring and control, IT systems contribute the business context and enterprise
intelligence that transform raw operational data into actionable insights. IT systems
often support more flexible access patterns than OT systems, allowing digital twins to
choose between in-place access and import based on specific requirements.

ENTERPRISE RESOURCE PLANNING

In large corporations enterprise resource planning (ERP) systems like SAP contain
critical master data about assets, maintenance schedules, procurement records, and
organizational hierarchies. This data provides essential context for interpreting
operational measurements—knowing that a pump was installed last month explains
why its vibration patterns differ from historical baselines. ERP data typically changes
slowly and benefits from in-place access through well-established APIs and database
connections. Listing 4.2 shows how you can query SAP via an ODATA API to get back
sales data. To try this out yourself, you can sign up at https://api.sap.com/ and get
an API key that you can use on the publicly available SAP API sandbox.



https://api.sap.com/

import requests

url = "https://sandbox.api.sap.com/s4hanacloud/sap/opu/
=odata/sap/API_SALES_ORDER_SRV/A_SalesOrder" #1
headers = {

"APIKey": "your_api_key_here", #2

"Accept": "application/json"
¥
params = {

"$t0p": ||5||,

"$select": "SalesOrder,SoldToParty,SalesOrderDate, TotalNetAmount",
¥

response = requests.get(url, headers=headers, params=params)

if response.status_code == 200:
orders = response.json()["d"]["results"]
print(f"{len(orders)} Sales Orders from SAP:")

for order in orders:
so_id = order.get("SalesOrder", "N/A")
customer = order.get("SoldToParty", "N/A")
amount = order.get("TotalNetAmount", "N/A")
print(f" {so_id}: Customer {customer} - ${amount}")
else:
print(f"Error: {response.status_code}")

#1 Use the free SAP sandbox API and target the sales order API.
#2 Specify your API key as a header.

TIP

Being able to link data about orders and sales to operational data from sensors
allows you to start to answer questions from customers about the quality of goods
you have delivered to them for example.

FINANCE, PROCUREMENT, AND BUSINESS INTELLIGENCE

Integrating with financial and procurement systems lets a digital twin factor costs
into operational decisions. Understanding financial data such as payment terms and
cash conversion cycles can enable, for example, recommendations for inventory
levels that will minimize working capital while maintaining operational performance.
An autonomous digital twin may automatically place an order for a replacement part
from a supplier based on operational data from sensors.

Many organizations have existing investments in business intelligence and analytics
tools that contain pre-processed metrics, KPIs, and business rules that digital twins
can leverage rather than recreating. These platforms may already compute
equipment utilization rates, energy efficiency metrics, or maintenance cost analyses
that provide valuable inputs for digital twin algorithms and simulations.



4.2.3 The convergence of IT and OT

Digital twins that are accessed by end users to inspect, simulate, and predict a
physical system’s behaviors most often execute within the IT network, but rely on
data from OT systems. Consider using Google Maps to look at traffic congestion on
your route home. You would typically use a web browser to access the map view. The
data that controls the congestion coloring within the map may be sourced from a
traffic management system such as the Sydney coordinated adaptive traffic system
(SCATS) which is an OT system deployed in many cities across the world to manage
and control traffic signals. Given the threats posed to IT systems (think of viruses
and malware that you have encountered on personal computers), these cannot be
connected directly to an OT system. Imagine a virus from your home computer
infecting the city traffic control system.

CHALLENGES IN OT DATA INTEGRATION

Working with OT data presents unique challenges in simply accessing the data, with
industrial systems often operating on physically isolated (‘air gapped') networks with
strict security requirements to protect physical assets. Many organizations use data
diodes or unidirectional gateways that only allow data to flow out of OT networks,
making real-time querying impossible and forcing digital twins to work with replicated
data.

NOTE

The Stuxnet computer virus shows how dangerous it can be when industrial control
systems are compromised. Considered the worlds first digital weapon, this virus
targeted Siemens S7-417 PLCs in SCADA systems and was reportedly responsible
for the destruction of centrifuges within Iranian nuclear enrichment facilities in
20009.

OT environments use diverse proprietary protocols that evolved independently across
industrial domains. A single facility might use Modbus, Profibus, Ethernet/IP, and
OPC-UA simultaneously. Many legacy systems only support polling-based retrieval or
require complete dataset downloads rather than selective queries, forcing digital
twins to import massive amounts of data simply because source systems cannot filter
at the protocol level.

Direct querying of OT systems also risks operational continuity. Industrial control
systems prioritize deterministic responses over analytical workloads, and even
lightweight queries can introduce dangerous latency. Process historians often lack
modern query optimization, causing performance degradation when supporting both
real-time ingestion and analytical queries.

These constraints typically force digital twin architectures to implement data
mirroring strategies, where collectors replicate OT data to separate analytical
environments. While this introduces latency and storage overhead, it protects
operational systems while providing digital twins access to rich industrial data.



ARCHITECTURAL PATTERNS FOR CONVERGENCE

The industrial demilitarized zone (DMZ) has become the standard pattern for
connecting the IT systems, where digital twin applications normally live, to the OT
network. Just like a DMZ in military terms, it provides a neutral zone between the
trusted OT network and the hostile, untrusted IT network. This zone hosts systems
that both domains can access without directly connecting including:

e Mirror servers - replicate OT application interfaces for IT access without touching
OT systems.

e Protocol converters - translate between OT protocols such as Modbus and IT
protocols such as MQTT.

e Security gateways - inspect and filter traffic, ensuring only authorized data flows
between domains.

Figure 4.5 shows a common architecture for IT/OT convergence, known as the
Purdue model, which organizes industrial systems into hierarchical levels from field
devices up to enterprise systems, enabling secure and efficient data flow while
maintaining operational safety and security.
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Figure 4.5 The Purdue model of IT/OT convergence segments the network into layers with a DMZ
acting as a buffer zone between the OT and IT networks.

4.2.4 External data sources

Digital twins frequently transcend the confines of a single organization, relying
heavily on data that originates from external sources beyond your direct control.
These external data streams can range from third-party APIs and public datasets to
partner organizations' systems and cloud-based services. In many cases, external
systems serve as the primary, or even exclusive, source of important information for
your digital twin implementation. More commonly, external data supplements and
enriches your internal datasets, providing valuable contextual information that
enhances the accuracy and comprehensiveness of your digital twin models.

In section 4.4 we will look at different ways that external data can be integrated into
your digital twin.



4.3 Data structures

How you structure data for storage and processing significantly impacts query
performance, storage efficiency, and analytical capabilities. The architectural
decisions you make about data organization—whether to prioritize row-based or
columnar storage, how to partition datasets, what indexing strategies to employ, and
how to handle schema evolution—will determine not only how quickly you can
retrieve information but also what types of analysis become feasible at scale.
Different structural approaches optimize for different access patterns and use cases,
creating trade-offs between write performance and read efficiency, storage
compression and query flexibility, or real-time processing and historical analysis.

4.3.1 Relational structures

Relational structures organize data into normalized tables with defined relationships
between entities. This approach excels at maintaining data consistency, supporting
complex queries across multiple entities, and handling updates to discrete records.

The relational model’s strength lies in query flexibility—you don’t need to anticipate
every possible question when designing the schema. Unlike other approaches that
optimize for specific access patterns, relational databases excel at ad-hoc analytical
gueries that weren’t considered during initial design. This flexibility becomes
invaluable as digital twin requirements evolve and new analytical needs emerge.

Figure 4.6 shows a simplified example of how maintenance tasks for an industrial
asset can be represented as a relational data model, with each table holding rows
representing instances of an entity and key references between the tables
representing connections between these entities. In this way, however many
workorders and tasks are created for an asset, there will only ever be one asset
record, with all other entities related to it.
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Figure 4.6 A relational model of a work order showing tables and properties representing entities, and
their relationships.

This type of data store allows ad-hoc analytical queries to be executed, such as
"show me all the maintenance tasks performed on-time by John Smith on the
printing press with identifier F1" as shown in listing 4.3. The database for this
example is provided alongside the code in GitHub.



import sqlite3
import pandas as pd

conn = sqlite3.connect('maintenance.db') #1

query = '''
SELECT WT.DESCRIPTION, WT.COMPLETED_DATE, WT.COMPLETED_BY
FROM WORK_ORDER_TASK WT, WORK_ORDER W, ASSET A
WHERE WT.STATUS = 'COMPLETED'
AND WT.COMPLETED_BY = 'John Smith'
AND WT.COMPLETED_DATE <= W.SCHEDULED_DATE
AND WT.WORK_ORDER_ID = W.WORK_ORDER_ID
AND W.ASSET_ID = A.ASSET_ID
AND A.asset_id = 'F1'

print("Tasks completed by John Smith on/before scheduled date for asset F1:")
results = pd.read_sql_query(query, conn) #2

print(results.to_string(index=False))

conn.close()

#1 SQLite stores its data in a file on the local filesystem.
#2 Pandas takes SQL query string and a connection to the database, and loads the results of the
query to a dataframe.

Many software applications that model physical objects and systems use relational
data models due to the integrity and consistency such a model enforces on the data
as well as the flexibility in querying them via a standardized query language. You can
use a relational model to represent data that benefits from ACID compliance and
transactional integrity. If your digital twin integrates with other systems such as ERP,
finance, or supply chain systems, many of these store their data in a relational
model, and you will often find yourself querying this type of data.

4.3.2 Columnar structures

Columnar storage organizes data by measurement type (column) rather than by
individual records (rows), which contrasts with traditional row-based databases that
store complete records together.

Columnar storage offers several key advantages for analytical workloads and data
processing. By storing data column-wise, it enables superior compression ratios since
similar data types are grouped together, allowing compression algorithms to work
more effectively. This structure dramatically improves query performance for
analytical operations that typically access only a subset of columns—instead of
reading entire rows, the system can retrieve just the specific columns needed for
analysis. Columnar storage also optimizes for aggregation operations like sums,
averages, and counts, as these calculations can be performed directly on compressed
column data without decompressing entire datasets. Additionally, this approach
supports efficient parallel processing, where multiple columns can be processed
simultaneously across different CPU cores, making it particularly well-suited for
large-scale data analytics and reporting scenarios.



The way in which timeseries data is stored as rows is shown as follows:

Row 1: [2024-01-15 14:30:00, temp=22.5, humidity=65, pressure=1013.2]
Row 2: [2024-01-15 14:31:00, temp=22.7, humidity=64, pressure=1013.1]
Row 3: [2024-01-15 14:32:00, temp=22.6, humidity=66, pressure=1013.3]

And how the same data would be stored in a columnar format:

Temperature: [22.5, 22.7, 22.6, 22.8, 22.4, ...]
Humidity: [65, 64, 66, 65, 67, ...]

Pressure: [1013.2, 1013.1, 1013.3, 1013.0, ...]
Timestamps: [14:30:00, 14:31:00, 14:32:00, ...]

4.3.3 Graph structures

Graph structures represent entities and their relationships as nodes and edges,
providing natural models for interconnected systems. Digital twins often need to
understand complex relationships between assets, locations, systems, and processes
that graph structures handle more intuitively than relational models.

Graph structures excel at traversal queries that follow relationships across multiple
entities. Finding all sensors within a building, identifying equipment dependencies, or
tracing supply chain relationships becomes straightforward with graph traversal
algorithms. Figure 4.7 shows a simple example of how a graph structure is used to
represent a house, it's rooms, and their devices. In this example finding the smart
bulbs in the house at 742 Evergreen Terrace involves finding the node that
represents the address, then traversing the outbound edges with the label nasroom, to
get the rooms of the house, followed by traversing the outbound edges with label
nasbevice, to find the devices, and finally looking for the nodes of type smart Bulb.

hasDevice
Smart

bulb

hasRoom

742
Evergreen
Terrace

hasRoom

Figure 4.7 A house, its rooms, and their devices modelled as a graph structure.

4.3.4 Document structures

Document structures store data as flexible, schema-less documents that can contain
nested structures and variable attributes. This approach works well for semi-



structured data from APIs, configuration files, or sensor data where different device
types report different sets of measurements. A simple example of how we might
model a house, it's rooms, and their devices as a document record is:

"id": "_496756956732423",
"name": "742 Evergreen Terrace"
"rooms": [
{ "name": "Bedroom",
"area": 10,
"devices": [
{ "name": "Smart bulb"
"address": "00:1B:63:84:45:E6"

+
1
}l
{ "name": "Kitchen",
"area": 20
+

1
F

Document structures provide schema flexibility that accommodates evolving data
requirements without requiring database migrations. However, this flexibility can
complicate queries that span multiple documents or require joins across different
data types. In the preceding example, finding all devices in a given home would be
easy, but finding what home a particular device is in would be significantly harder.

4.3.5 Key-value structures

Key-value structures provide the simplest data model, storing data as pairs of unique
identifiers and their associated values. This approach optimizes for high-performance
lookups and scales horizontally across distributed systems.

While key-value structures sacrifice query flexibility, they excel at use cases with
predictable access patterns and high-performance requirements. Caching frequently
accessed reference data or storing session information are common key-value
applications.

4.4 Data ingestion

While accessing data in place offers simplicity and reduces duplication, digital twins
often require dedicated data ingestion to meet their operational and analytical
requirements. The decision to import rather than query external systems may be
driven by the need to transform and enrich source data, run advanced analytics that
might overwhelm transactional systems, or maintain operational independence from
source systems. Lets look at some of the ways in which a digital twin can ingest data.

4.4.1 Batch data ingestion

Batch ingestion processes data in discrete chunks at scheduled intervals, hourly,
daily, or on-demand. Batch ingestion is popular for slow moving enterprise data and
offers advantages in reliability, cost efficiency, and processing complex
transformations. It is an important mechanism for a digital twin because it efficiently



handles large volumes of historical, contextual, and less time-sensitive data,
providing a comprehensive and stable foundation for analysis, modeling, and long-
term insights. This type of data is used by digital twins to understand past behavior
in order to predict future outcomes.

TRY IT OUT: INGEST MILLIONS OF TAXI TRIPS TO MODEL CITY
TRANSPORTATION

Imagine that you are building a city scale digital twin of New York. There are over
13,000 iconic yellow cabs in the city making millions of trips per year. Understanding
these taxi movements in the real world enables your digital twin to gain insight into
the functioning of the city’s transportation network, enabling congestion
management, infrastructure planning, and simulation and testing of new traffic
management strategies. The New York City Taxi and Limousine Commission provides
open taxi trip record data published monthly at
https://www.nyc.gov/site/tlc/about/tlc-trip-record-data.page. We can ingest this data
in monthly batches, cleansing it on ingestion, and store it in a relational database
within our digital twin. Once the data has been ingested, we can run analytical
queries over it, or use it to retrain a demand prediction ML model for each monthly
batch.

Listing 4.4 shows this in action by downloading the June 2025 yellow cab trip data,
performing some simple cleansing and loading it to a SQLite database for analysis.
Through this analysis we learn that this month nearly four million cab trips were
made, with an average distance of 3.6 miles.


https://www.nyc.gov/site/tlc/about/tlc-trip-record-data.page

import pandas as pd
import sqlite3, requests

db = sqlite3.connect('taxi.db') #1
db.execute('''CREATE TABLE IF NOT EXISTS trips (
pickup_time TEXT, distance REAL, fare REAL, tip REAL, total REAL)''')

def download(): #2
url = 'https://d37ciévzurychx.cloudfront.net/trip-data/yellow_tripdata_
=2025-06.parquet’
with open('taxi.parquet', 'wb') as f:
f.write(requests.get(url).content)

def process(): #3
df = pd.read_parquet('taxi.parquet')
clean = df[
(df['fare_amount'] > 0) & (df['fare_amount'] < 500) &
(df['trip_distance'] > 0) & (df['trip_distance'] < 100)
1[['tpep_pickup_datetime', 'trip_distance', 'fare_amount', 'tip_amount',
= 'total_amount']]

clean.columns = ['pickup_time', 'distance', 'fare', 'tip', 'total']

clean.to_sql('trips', db, if_exists='append', index=False) #4
print(f"Complete: {len(clean):,} trips loaded")

def summarize(): #5
stats = pd.read_sql_query("""
SELECT COUNT(*) trips, ROUND(AVG(distance),1) avg_miles,
ROUND(AVG(fare),2) avg_fare, ROUND(SUM(total)) revenue
FROM trips""", db)
print("\n", stats.to_string(index=False))

download()
process()
summarize()

#1 Create a SQLite database to store the data.

#2 Download the data for June 20025.

#3 Load the Parquet file to a dataframe and remove records with no distance or fare.
#4 Write the cleansed data to the SQLite database.

#5 Use a SQL query to summarize the data.

4.4.2 Streaming data ingestion

Streaming data ingestion involves the continuous flow of data into a digital twin
enabling it to be a dynamic and live representation of its physical counterpart. When
working with streaming data, you often don't just want raw sensor readings, but
trends. A common technique is to compute aggregates such as averages, minimums,
or maximums over a sliding window of recent data. Instead of waiting for a batch to
complete, the twin continuously updates these values as new data points arrive.

For example, suppose a temperature sensor emits one reading every second. Rather
than acting on every single value, you could maintain a 30-second sliding average
that smooths out noise while still responding quickly to changes. As each new



reading arrives, the oldest one falls out of the window, and the average is
recalculated. Figure 4.8 shows how a sliding window over a data stream works.

t10-114

t11-115 The window between t10
and t13 only contains
events 1,2, and 3

t12-116

© e 6 ® 6

t10 t1 t12 t13 t14 115 116 17 t18 t19 t20

Figure 4.8 A sliding window of length four over a data stream. As the window slides through time,
older readings fall out, and new readings are added.

This kind of in-stream processing is valuable because it reduces noise in high-
frequency signals, preserves timeliness by avoiding long batch delays, and enables
real-time alerts when trends cross defined thresholds.

TRY IT OUT: STREAM LIVE TRAIN MOVEMENT DATA

The National Rail network in the UK sees over 1.5 billion passenger journeys yearly
and is a key part of the British economy. A recent report from the Department for
Transport estimates an £850 million potential economic benefit from an integrated
network management digital twin through reduced congestion, journey optimization
and maintenance management. As you can imagine, understanding the state of
trains on the physical network at any point in time would be an important part of a
digital representation of an integrated transport network. The operator of the rail
network across the UK publishes a range of open data feeds including train
movement data that provides a real time stream of train positioning and movement
event data across the network. You can easily subscribe to this public stream of data
and try ingesting it into your own application to get an idea of ingesting streaming
data.

We can add a sliding window over the stream as we read it to calculate the
percentage of train movements that are late in a five minute period as shown in
listing 4.5. GitHub includes the full code and instructions on how to run this example.



cutoff = datetime.now() - timedelta(minutes=5) #1
while window and window[0][0] < cutoff: #2
window.popleft()

for m in (json.loads(frame.body) if isinstance(json.loads(frame.body), list)
= else [json.loads(frame.body)])[:5]:

msg_type = m.get('header',{}).get('msg_type','")

body = m.get('body',{})

if msg_type == '0003': #3
status = body.get('variation_status','')
train_id = body.get('train_id',"'"')
print(f"{status} {train_id}")

window.append((datetime.now(), train_id, status == 'LATE'))
count += 1
if count % 25 == 0: #4

late_count = sum(1 for _, _, is_late in window if is_late) <>

on_time_rate = (len(window) - late_count) / len(window) * 100 if
=window else 100

print(f"5min window: {len(window)} movements, {on_time_rate:.1f}%
=on-time")

#1 Set the window to be five minutes in length.

#2 Remove events from the window that are older than five minutes.
#3 Only process train movement events.

#4 Calculate aggregates every 25 events.

4.4.3 API integration

APIs provide structured, on-demand access to data from both internal enterprise
systems and external services, making them essential components of digital twin
data ingestion strategies. Unlike batch or streaming ingestion that push data on
predetermined schedules, APIs enable digital twins to pull specific data when needed,
supporting both scheduled collection and event-driven integration patterns. Digital
twins typically integrate with:

e Representational state transfer (REST) APIs are widespread across many systems
due to their simplicity and provision of predictable, cacheable access to well-
defined resources.

e GraphQL APIs allow a digital twin to request exactly the data that it needs in a
single query which is valuable when integrating with systems that expose rich
data models when you only need a few attributes.

e gRPC APIs provide high-performance, type-safe communication particularly
valuable for real time operations. It's binary protocol and code generation from
schema definitions reduce integration complexity while improving performance
over HTTP-based alternatives.

e WebSocket APIs enable bidirectional, real-time communication between systems.
Unlike request-response patterns, WebSockets maintain persistent connections
that support instant data updates and control commands.

TRY IT OUT: ACQUIRE SATELLITE IMAGERY FROM A REST API



The NASA visible infrared imaging radiometer suite (VIIRS) instrument is a satellite
mounted sensor that collects imagery of the earth’s surface for monitoring and
investigating changes in surface vegetation, and water and land use, taking daily
images. You can understand how this information would be useful to a digital twin
that needs to represent geophysical properties of part of the earth. NASA publishes a
RESTful API as part of its global imagery browse service (GIBS) service, that you can
call to get an image of the earth. The sample code in listing 4.6 retrieves an image,
taken by VIIRS, of the largest man-made lake in the world which allows tracking the
impact of drought on this important reservoir.

import requests
from datetime import datetime, timedelta

bbox = (26.5, -18.5, 29.0, -16.0) #1
yesterday = (datetime.now() - timedelta(1)).strftime('%Y-%m-%d"')

params = {
'SERVICE': 'WMS',
'"VERSION': '1.1.1',
'REQUEST': 'GetMap',
"LAYERS': 'VIIRS_SNPP_CorrectedReflectance_TrueColor',
'SRS': 'EPSG:4326',
'BBOX': f'{bbox[0]},{bbox[1]},{bbox[2]1},{bbox[3]1}',
'"WIDTH': '1024',
"HEIGHT': '640',
'"FORMAT': 'image/png',
'TIME': yesterday,
'"TRANSPARENT': 'true'
}

response = requests.get( #2
"https://gibs.earthdata.nasa.gov/wms/epsg4326/best/wms.cgi',
params=params)

filename = f'lake_kariba_{yesterday}.png'
with open(filename, 'wb') as f:
f.write(response.content)

#1 Define the area of interest on the surface of the earth as a bounding box using EPSG:4326
(WGS*4) coordinates.
#2 Query the RESTful API with an HTTP GET request.

4.4.4 ETL and data transformation

Extract, transform, and load (ETL) processes bridge the gap between diverse source
systems and standardized digital twin storage. ETL operations ensure data
consistency regardless of source format, apply business rules and validation, and
aggregate and optimize data for analytical queries.

The transformation stage handles data cleansing, type conversion, aggregation, and
enrichment. Raw sensor readings might be validated against expected ranges,
converted to standard units, and enriched with contextual information from reference
data systems.



TRY IT OUT: USE APACHE SPARK TO AGGREGATE AND TRANSFORM POWER
CONSUMPTION DATA

The optical sensor I fitted to my main electrical meter in chapter 3 allows me to
export minute by minute power consumption data as CSV. I would like to aggregate
that data into weekly consumption and cost for a home dashboard. Rather than
running aggregation queries every time the dashboard loads, I can use Apache Spark
to transform and aggregate the raw CSV data once, as shown in listing 4.7. Apache
Spark’s distributed processing capabilities ensure this approach scales to very large
data sets.

from pyspark.sql import SparkSession
from pyspark.sql.functions import date_trunc, sum as spark_sum, avg, col
from pyspark.sql.types import *

spark = SparkSession.builder.appName("WeeklyUsage").getOrCreate()

schema = StructType([ #1
StructField("datetime_utc", TimestampType(), True),
StructField("datetime_local", TimestampType(), True),
StructField("watt_hours", DoubleType(), True),
StructField("cost_dollars", DoubleType(), True),
StructField("is_peak", BooleanType(), True)

D

df = spark.read.option("header", "true").schema(schema).csv(
="powerpal_data.csv")

weekly_usage = df.groupBy( #2
date_trunc("week", col("datetime_local")).alias("week_start")
) .agg(
(spark_sum("watt_hours") / 1000).alias("total_kwh"),
spark_sum("cost_dollars").alias("total_cost_dollars")
) .orderBy("week_start")

print("Weekly Usage (kWh) and Cost:")
weekly_usage.show()

spark.stop()

#1 Define the structure of the data stored in the CSV file.
#2 Spark’s SQL functions group and aggregate the data in the CSV file.

Modern ELT approaches load raw data first and perform transformations within the
target system. This pattern works well with cloud data warehouses that provide
powerful transformation capabilities and can handle raw data volumes efficiently.

4.5 Storage solutions

Selecting the right storage solution is a key factor in the success of your digital twin
meeting your objectives. Digital twins require diverse data types, from real-time
sensor readings and historical logs to design blueprints and simulation outputs, each



with different storage requirements for capacity, performance, scalability, and
security.

These requirements are often in conflict with one another. Real-time streams need
high-throughput writes and low-latency access, while historical analytics require
efficient bulk reads across years of data. Metadata benefits from relational integrity,
media files need object storage for large files, and ML models require feature stores
for scalable predictions and retraining. No single storage technology handles all
requirements effectively. Modern digital twin architectures use polyglot persistence,
deploying multiple storage systems optimized for specific data types and access
patterns. This maximizes performance while controlling costs, though it requires
understanding each storage technology’s strengths and limitations.

4.5.1 Timeseries databases

Timeseries databases form the backbone of many digital twins, being optimized for
the continuous stream of measurements about the changing nature of the physical
system that arrive over time. There are many specialized timeseries databases
available today, including InfluxDB, Kdb+, and Amazon Timestream, which is
available as a managed service within AWS. TimescaleDB is an open source extension
to the PostgreSQL relational database optimized for timeseries data. Regardless of
the specific product these databases share a set of core features:

e Columnar storage - organizes data by measurement type rather than by time,
enabling efficient compression and analytical queries across timeseries data.

e Compression - timeseries data has a number of characteristics that make it easy
to compress, including the fact that timestamps always increase and often at
regular intervals, consecutive sensor readings may stay the same for a period of
time, or only change by a small amount and sometimes gaps in data collection
lead to many null values. Techniques such as delta encoding stores only the
difference between consecutive values, rather than the values themselves. For
example, if temperature readings are 25.1, 25.3, 25.2, 25.4, storing 25.1, +0.2,
-0.1, +0.2 might use less space if the deltas are smaller and can be represented
with fewer bits.

e Aggregation - automatically creates summary statistics at multiple time
granularities, transforming raw data using common statistical and temporal
functions (mean, min, max) without expensive real-time calculations. Instead of
computing daily averages from millions of individual readings, aggregated data
provides pre-calculated summaries that enable instant dashboard updates and
historical analysis.

e Time-based partitioning - distributes data across storage tiers based on age,
keeping recent data in high-performance storage while moving historical data to
cheaper options.

4.5.2 Analytical data storage

Analytical query patterns in digital twins typically involve scanning large datasets to
identify patterns, correlations, or anomalies across multiple dimensions. These
queries differ from operational queries that retrieve specific records by key or recent
time ranges. For example, analyzing the relationship between equipment age,



maintenance frequency, and failure rates requires scanning years of maintenance
records, device specifications, and sensor readings. Storing data in a columnar
approach as specialized timeseries databases do also provides significant advantages
for analytical queries where only specific columns need to be read rather than entire
records.

ANALYTICAL DATABASES

Snowflake, Amazon Redshift, and Google BigQuery are prominent examples of cloud-
native columnar data warehouses. They are purpose-built for analytical workloads,
meaning they are optimized for complex queries, reporting, and business
intelligence, rather than high-volume, low-latency transactional processing.

NOTE

The separation of storage and compute in modern cloud analytical databases
represents one of the most important innovations in cloud databases allowing
independent scaling of each resource, reducing costs and improving flexibility. You
can scale compute resources for complex queries while maintaining cost-effective
storage for large datasets.

The main differences between these and dedicated timeseries databases (like
InfluxDB or TimescaleDB) lies in their broader scope. While timeseries databases are
focused on temporal data patterns and specific optimizations for time-based queries
and compression, analytical data warehouses are designed to handle a wide variety
of data types and structures, including structured relational data, semi-structured
data, and of course timeseries data from other sources.

COLUMNAR FILE FORMATS

Specialized analytical databases like Redshift offer advantages such as complex SQL
query capabilities (window functions, common table expressions), dedicated compute
resources, and optimized query planning. However, if your workload doesn’t require
these features, the additional cost may not be justified. If you have the need to
perform occasional ad-hoc analytical queries from your digital twin, a file based
columnar data store such as Apache Parquet is a cost efficient way to store data and
still query it via SQL or Python. Another benefit of Parquet is that it is an open
standard allowing you to move data between cloud providers or on-premises without
vendor lock-in or data migration complexity. Listing 4.8 uses DuckDB to query taxi
cab data in Parquet format using SQL, without the need to load the data to a
database first.



import duckdb, requests, time

url = "https://d37ciévzurychx.cloudfront.net/trip-data/yellow_tripdata_

=2024-01.parquet"

with open('taxi.parquet', 'wb') as f: #1
f.write(requests.get(url).content)

start_time = time.time()
result = duckdb.query(""" #2
SELECT
COUNT(*) as trips,
ROUND (AVG(fare_amount), 2) as avg_fare,
ROUND(MIN(fare_amount), 2) as min_fare,
ROUND (MAX(fare_amount), 2) as max_fare
FROM 'taxi.parquet'’
"ty fetchone()
query_time = time.time() - start_time

print(f"\nResults: {result[0]:,} trips, avg ${result[1]},
=range ${result[2]}-${result[3]1}")

#1 Get a Parquet file containing taxi trip data from January 2024.
#2 Use DuckDB to query the Parquet file using standard SQL.

4.5.3 Data lakes and lakehouse architectures

While columnar analytical storage excels for structured data, digital twins generate
diverse formats—JSON sensor logs, images, PDFs, and ML model outputs—that don't
fit predefined schemas. Traditional analytical databases struggle with this
heterogeneity, driving organizations toward data lake architectures. Data lakes shift
from "schema-on-write" to "schema-on-read" approaches, preserving raw data in
native formats and applying structure only when needed for analysis. This provides
flexibility for diverse data types while maintaining cost-effective storage.

Traditional data lakes store diverse data effectively but lack performance and ACID
transaction support required for analytical applications. Lakehouse architectures
address these gaps by adding database-like capabilities to object storage, combining
data lake flexibility with data warehouse performance and reliability. Data lakes often
store data in an optimized columnar file format such as Apache Parquet, in an object
store like S3, but to modify these files requires expensive read, modify, write cycles.
Lakehouse storage technologies enable data lakes, using low cost and virtually
unlimited object storage, to behave like data warehouses, supporting transactions
such as merge and upsert.

TRY IT OUT: ACID TRANSACTIONS WITH DELTA TABLES

In a traditional data lake that uses Parquet for storage, it is not possible to update
data (for example to add a new column) due to the fact that Parquet is immutable.
Listing 4.9 shows how delta tables, a lakehouse storage technology, allows data to be
updated (this example uses your local disk to store Parquet files). The delta table
removes the need to read the Parquet file to memory, make updates, and write it



back to disk when the data is updated. Please note the sample here is truncated for
brevity, but the full code is available in GitHub.

import pandas as pd
from deltalake import DeltaTable, write_deltalake

def main():
table_path = "./delta_demo/sensor_data"

dfl = pd.DataFrame( #1

{
"sensor_id": ["temp_001", "temp_002", "humidity_001"],
"location": ["factory", "warehouse", "factory"l,
"value": [23.5, 18.2, 65.4],
"timestamp": pd.to_datetime(["2024-01-15 10:30:00"] * 3),
+

)

write_deltalake(table_path, df1) #2
print("Created Delta table with columns:", list(dfl.columns))

dt = DeltaTable(table_path)

df_update = pd.DataFrame( #3

{
"sensor_id": ["temp_001"],
"location": ["factory"],
"value": [24.1], # Updated temperature
"timestamp": pd.to_datetime(["2024-01-15 12:00:00"]),
"unit": ["celsius"],
+

)

dt.merge( #4
df_update,
predicate="target.sensor_id = source.sensor_id",
source_alias="source",
target_alias="target",
) .when_matched_update_all() .when_not_matched_insert_all().execute()

#1 Define some dummy sensor data in a dataframe.

#2 Write the sensor data to a delta table, stored as parquet on the local filesystem.
#3 Update one of the attributes for sensor temp_001.

#4 Merge the updates back to the delta table.

4.5.4 Transactional data storage

Transactional databases manage reference data, configuration information, and
operational records that require ACID properties and complex relational queries.
These systems handle discrete updates, maintain data consistency, and support the
structured data that defines digital twin entities. In contrast to analytical data stores
that are designed for efficient querying and processing of large datasets to support
reporting and analysis, transactional data stores optimize for fast, consistent data
input and modification.



e Relational databases remain essential for reference data, asset hierarchies, and
operational records that benefit from normalized schemas and referential
integrity. Modern cloud databases provide managed services that reduce
operational overhead while maintaining SQL compatibility.

e NoSQL databases emerged to address limitations of relational databases when
handling large-scale, diverse data with flexible schemas and horizontal scaling
requirements. Digital twins often work with just this type of data from high-
volume sensor streams, varying data structures across device types, and
unpredictable scaling demands as systems grow from pilot projects to enterprise
deployments.

4.5.5 Specialized storage systems

Digital twins often require specialized storage capabilities for specific data types and
use cases:

e Object storage provides scalable, cost-effective storage for unstructured data
including images, videos, documents, and large files. Cloud object storage
services offer multiple storage tiers, automatic lifecycle management, and global
distribution capabilities.

e Graph databases excel at storing and querying complex relationships between
entities. These systems use specialized algorithms for traversing connections and
identifying patterns across interconnected data.

e Vector databases enable semantic similarity searches across high-dimensional
data by storing embeddings and providing optimized nearest-neighbor search
algorithms. These systems support applications like document similarity, anomaly
detection, and recommendation engines.

e Feature stores centralize engineered features for machine learning, ensuring
consistency between training and serving environments while providing
versioning, lineage tracking, and low-latency access for real-time predictions.

4.5.6 Data lifecycle management

The age of the data you collect and store also influences the storage technology that
you choose, and data may transition through different types of storage over time.
Recent data typically needs fast access for operational decision making, including
alerts and dashboard visualization; whereas older data, while still important for
analytical purposes, can often tolerate slower query times.

HOT DATA FOR REAL-TIME AND RECENT DATA ACCESS

Hot data includes recent operational measurements, current configuration data, and
frequently accessed reference information. This data requires high-performance
storage with low-latency access, typically using premium storage tiers and memory
caching.

WARM DATA FOR HISTORICAL ANALYSIS AND REPORTING



Data from weeks to months old serves different analytical purposes with relaxed
performance requirements. Monthly reports, trend analysis, and model training
workloads can tolerate query response times measured in seconds rather than
milliseconds. This shift in performance expectations enables cost optimizations
through compression, aggregation, and migration to slower but cheaper storage
tiers.

COLD DATA FOR ARCHIVAL ACCESS

Historical data beyond immediate operational relevance can be moved to archival
storage where access times measured in minutes or hours become acceptable. This
cold data primarily serves compliance auditing, forensic analysis, and occasional deep
historical studies that justify longer retrieval delays.

Cloud archival services like AWS Glacier or Azure Archive Tier provide cost-effective
cold storage with retrieval times ranging from minutes to hours depending on the
storage class selected. The dramatic cost reduction—often 10:1 or better compared
to hot storage—justifies the performance trade-off for infrequently accessed data.
Figure 4.9 shows an example of lifecycle tiering and the effect on storage cost for
data stored in Amazon S3.

30 days 60 days 365 daysl
after creation after creation after creation

N ey

&

S3 Standard 53 Standard 83 Glame.\r Delete
Infrequent Access Deep archive

$0.023 / GB / month $0.0125 / GB / month $0.000098 / GB / month

Figure 4.9 An example lifecycle policy for data stored in Amazon S3 that transitions data to cheaper
storage and eventual deletion as it ages.

4.6 Data governance and compliance

Digital twins aggregate vast amounts of operational and business data from across
organizational boundaries, creating both new analytical opportunities but also
significant governance challenges. As digital twins evolve from pilot projects to
enterprise-critical systems, establishing robust data governance frameworks becomes
essential for maintaining data quality, ensuring regulatory compliance, and managing
the risks inherent in large-scale data integration.

4.6.1 Data classification and sensitivity

Establishing clear data classification frameworks enables appropriate protection levels
for different information types. Classification schemes typically include:

e Public data that can be shared openly without restrictions.
e Internal data restricted to organizational use.



e Confidential data requiring special handling and access controls.
e Restricted data subject to the highest security protections.

Digital twin architectures must enforce these classifications across diverse data
sources, ensuring sensitive information receives appropriate protection throughout its
lifecycle.

4.6.2 Regulatory compliance

Regulated industries face complex compliance requirements that vary by sector,
geography, and data type. Healthcare digital twins must comply with HIPAA
requirements, while financial services face SOX and PCI DSS constraints.
International regulations like GDPR create additional complexity for systems that
cross jurisdictional boundaries. Key compliance requirements often include:

e Data minimization - collects only data necessary for legitimate purposes.

e Data portability - enables data extraction in standard formats.

e Right to deletion - provides mechanisms to remove personal information.

e Audit trails - maintain comprehensive logs of data access and modifications.

4.6.3 Access control and authentication

Digital twins require sophisticated access control models that consider data
sensitivity, user roles, and operational context. Role-based access control (RBAC)
provides a foundation, but complex environments may require attribute-based access
control (ABAC) that considers factors like time of access, location, and data age.

Zero-trust architectures assume no implicit trust based on network location,
implementing verification for every access request. This approach is particularly
important for digital twins that span multiple organizational boundaries and network
segments.

4.6.4 Data quality

Poor data quality in digital twins can lead to failures that compromise operational
safety and business outcomes. Faulty sensor readings can trigger incorrect
automated decisions, while corrupted data feeds may undermine predictive models
and analytics. Establishing robust data quality standards requires defining acceptable
ranges for each sensor type, validation rules for imported data sources, and
standardized procedures for handling missing or anomalous values. These standards
should account for both individual sensor constraints and cross-sensor relationships
that can validate data plausibility.

4.7 Selecting the right combination

Making optimal decisions about data architecture requires understanding how data
types, sources, structures, ingestion methods, and storage technologies work
together. Table 4.2 illustrates common types, sources, and integration patterns for
the data found in a digital twin.



Table 4.2 Typical sources of different data types in a digital twin and how these are typically
structured, integrated, and stored.

. Integration Storage . .

Data type Typical sources method Structure technology Considerations

Reference ERP, asset Batch, API Relational PostgreSQL, Update frequency, consistency

data management Memgraph

Timeseries 10T sensors, Streamin Columnar InfluxDB, Volume retention, query

data SCADA 9 Timestream patterns

Spatial data | GIS, surveys Batch, API Specialized POSEGIS, Complexity, query types,
Memgraph accuracy requirements

. . Batch . Feature stores, | Refresh frequency, serving

Derived data | Analytics, ML processing Various s3 requirements

Unstructured | Cameras, API, batch Binary/text S3, blob Size, access patterns,

data documents storage processing needs

This decision matrix highlights that there is no single 'best' data storage solution;
rather, optimal architecture is data type-driven.

Transactional data utilizes relational databases for schema enforcement and
consistency, which is crucial for ERP systems. In contrast, analytical data relies on
specialized storage technologies optimized for rapid ingestion, high-volume querying,
or complex indexing. The handling of unstructured data using simple, highly scalable
object storage completes the picture, demonstrating that the sheer volume and
access pattern requirements of files often supercede the need for deep structure.

When evaluating architecture options, consider these key factors, but remember the
choice of a data storage solution, whether it’s relational, NoSQL, columnar, or
specialized, is a balancing act that requires a deep technical and business
understanding across several dimensions that are based on the outcomes you plan to
achieve with your digital twin:

e Performance requirements - real-time applications require low-latency storage
and ingestion, while analytical workloads can tolerate higher latency for better
cost efficiency.

e Scale characteristics - data volume growth rates influence storage technology
choices and cost projections. Some systems scale better horizontally while others
optimize for vertical scaling.

e Consistency requirements - critical operational data may require ACID
transactions, while analytical data can often accept eventual consistency for
better performance and cost.

e Cost constraints - storage costs vary dramatically between technologies and
access patterns. Understanding total cost of ownership includes ingestion,
storage, compute, and data transfer costs.



e Integration complexity - simpler architectures reduce operational overhead but
may sacrifice optimization opportunities. Complex polyglot architectures provide
optimization but increase management burden.

4.8 Data store for a home digital twin

My home digital twin requires storage for four data categories: timeseries data from
sensors and measurements, object data including images and documents, spatial
data for floorplans, and relationship data linking sensors, rooms, and content.

I chose cloud storage over local storage for three key reasons. Cloud providers offer
superior reliability with automated maintenance, patching, and backups that I cannot
match individually. They provide cost-efficient scalability, allowing me to pay only for
current usage while accommodating future growth. Finally, they maintain higher
security standards than I could reasonably implement myself.

This approach does introduce some risks that I've accepted including a dependency
on constant internet connectivity (which I already have), potential egress costs
(which are minimal given the relatively small data volumes I anticipate), and vendor
lock-in (I mitigate this by choosing established, stable services). The operational
simplicity and professional infrastructure of cloud storage justify these trade-offs for
this application.

4.8.1 Storing timeseries data

I chose Amazon DynamoDB as the primary time series data store for my home digital
twin. While not purpose-built for time series like InfluxDB or TimescaleDB,
DynamoDB’s serverless architecture eliminates infrastructure management and
provides pay-per-use pricing—my most important requirement—while providing
single-digit millisecond performance at any scale. DynamoDB’s key-value design has
the one crucial requirement that you know your access patterns before storing data.
This query-first approach demands more upfront planning but delivers highly
optimized performance for actual use cases rather than theoretical flexibility. For
home digital twins with well-defined patterns and modest data volumes, this trade-
off favors DynamoDB’s operational simplicity over specialized time series features.

I use a single table design with a simple schema reflecting the sensor data it stores.
The partition key is a unique sensor identifier (device EUI for LoRaWAN sensors,
descriptive key for manual uploads), the sort key is the measurement timestamp,
and attributes contain the relevant readings for each sensor type. This structure
accommodates all my home sensors and enables time-window queries, as shown in
table 4.3.



Table 4.3 A single DynamoDB table stores all the timeseries data produced by sensors in my home and
allows efficient retrieval.

Partition key Sort key Humidity | Temperature | CO2 | Power | Current | pH
a84041ce41845d13 | 1749945584458 | 57.9 18.4 - - - -
a840411971871c86 | 1749946784664 | 66.5 20.5 - - - -
24e124710b423527 | 1749946183884 | 60.3 16.4 765 | - - -
00137a21000013507 | 1749947383975 | - - - 20 100 -
main_meter_1 1749947383214 | - - - 2000 |- -
pool_chemistry_1 1749947383569 | - - - - - 7.2

The use of sensor identifier and timestamp as a compound key in the DynamoDB
table allows me to efficiently query the data based on sensor and time period, as
shown in listing 4.10. In this example I use a Docker container hosting a local version
of DynamoDB running on my machine for development and testing, without the need
to deploy to AWS.

import boto3

db = boto3.client('dynamodb', endpoint_url='http://localhost:8000',
region_name='us-east-1', aws_access_key_id='dummy',
aws_secret_access_key="'dummy')#1

response = db.query( #2
TableName='dtia_sensor_data',

KeyConditionExpression="'sensor_id = :sensor AND #ts BETWEEN
= :start AND :end',
ExpressionAttributeNames=q{'#ts': 'timestamp'},
ExpressionAttributeValues={

':sensor': {'S': 'sensor_idl'},

"istart': {'N': '1749946000000'},
"rend': {'N': '1749947560000'}

)

print(f"Found {response['Count']} readings:")
for item in response['Items']:

ts = item['timestamp']['N']

temp = item['temperature']['N']

humidity = item['humidity']['N']

print(f" {ts}: {temp}°C, {humidity}%")

#1 Use a local instance of DynamoDB running in a Docker container in this example.
#2 Query the table based on sensor identifier and start and end time.

4.8.2 Storing object data



For my home digital twin, Amazon S3 serves as the object storage layer for
unstructured data including images, documents (appliance manuals, floorplans,
maintenance records), and historical sensor data exports as infrequently accessed
warm data. S3’s key advantages are virtually unlimited storage capacity and multiple
storage classes that automatically optimize costs based on access patterns—
frequently accessed configuration files remain in standard storage while historical
exports transition to cheaper Infrequent Access or Glacier tiers.

home-digital-twin-bucket/
— sensors/
| — config/sensor_id1/config.json
| L— firmware/temp_humidity_esp32-v2.1.0.bin
|— data_exports/
| | daily/20825-08-18/sensor_data.csv
| L— monthly/2025-08/complete_export.json
— 3d_models/
|  — mesh/home.obj
| L— tiles/tileset.json
— media/images/2025-08-18/water_meter_1.jpg
L— documents/
I— manuals/MHI_DXK18ZTLA-WF.pdf
— maintenance/2024-01-02_aircon_service.pdf
L— floorplans/home.png

4.8.3 Storing relationship data

For complex relationship data in my home digital twin, I need a database that
handles interconnected information efficiently. Graph databases excel here over
traditional relational databases by providing natural representation of connections,
efficient traversal algorithms, flexible schema evolution, and rich contextual insights
that reveal patterns difficult to infer from other data models.

Graph database options include fully managed cloud services (Amazon Neptune,
Azure Cosmos DB, Neo4j AuraDB) and self-hosted solutions. While managed services
suit large, mission-critical workloads, my small home digital twin model doesn’t
justify their cost. Instead, I host Memgraph in a Docker container on an AWS EC2
server, providing low-cost operation while maintaining elasticity and future portability
to other compute services. In chapter 5, we will look at how I use this graph
database to store relationship data in my home digital twin.

NOTE

Docker is a platform that packages applications and their dependencies into
lightweight, portable containers that run consistently across any environment. This
eliminates compatibility issues and makes it easy to deploy complex applications.

4.9 Summary

e There are a number of different types of data that are found in most digital twins
including timeseries, relational, object, spatial, and derived data which includes
features and embeddings.



Digital twins source data from both internal data stores, and from external
sources.

Both operational systems and information technology systems within the
organization are important sources of data that digital twins leverage, with these
traditionally separate systems beginning to converge.

There are different strategies digital twins adopt to ingest data including batch-
based, streaming, and API-based integrations.

There are a range of modern data storage technologies that can be adopted to
store the types of data a digital twin uses.

Digital twins aggregate data from many sources and governance and
management of compliance of this data is an important consideration.



5 Modeling reality

This chapter covers

e Contextualizing data and linking it semantically to create
a model of reality

e Ontologies as blueprints for semantic understanding of
models of reality

e Knowledge graphs as a way to model relationships in the
real world

e Serving the model of reality
e The importance of standardization

We have looked at how we can create a digital representation
of a physical system, use sensors to measure how that
system changes, and the ways in which we can integrate and
store this data in a digital twin. But without some way to add
meaning to this data, it remains a set of disconnected
measurements that offer little insight into the true behavior
of the physical system. Raw sensor readings such as
temperature values, pressure measurements, or vibration
frequencies are merely numbers until they are contextualized
within an understanding of what they represent, how they
relate to one another, and what patterns or anomalies might
indicate about system health or performance.

The transformation from data to actionable intelligence
requires layering understanding onto raw measurements. This
involves creating relationships between diverse data streams
and establishing the semantic frameworks necessary for a
digital twin to interpret and reason about information,
mirroring human expertise. This crucial step elevates the
digital twin from a sophisticated monitoring tool to an
intelligent system capable of reasoning and prediction.



We begin by examining how raw measurements become
meaningful insights about system behavior. You’ll discover
how ontologies create semantic meaning, knowledge graphs
build interconnected representations, and mathematical
models provide quantitative foundations for analysis. By the
end, you'll design modeling strategies that transform
disparate data into unified representations, select appropriate
techniques for different scenarios, and create digital twins
that understand and reason about the systems they
represent.

5.1 Making sense of data

Imagine that I am not at home, but have access to the
sensor data from devices that I have installed in the house.
Figure 5.1 is an example of data from an air sensor stored in
DynamoDB in my home digital twin. In this table, I see a
collection of numbers which are raw data—the number 20.1 is
an example. The headings to the table add some meaning to
that raw data, so I understand that the the number 20.1
represents a temperature (but is it degrees Celsius, or
Fahrenheit?).

Without any additional context around the data, I cannot
make any meaningful decisions based on it. I can see that the
temperature in some room of the home is around 20°, but I
do not know where in my home the sensor with identifier
24e1247100423527 IS currently located.



partKey (String) ¥ | sortKey (Number) % co2 % |  humidity ¥ pm25 ¥ | presssure ¥ temperature ¥

[ 24e124710b423527 1755167296031 1086 54 2 10241 201

] 24e124710b423527 1755167896649 588 535 2 1024.4 20
: 24e124710b423527 1756463299483 1430 59.5 14 1030.6 20.1
[ 24e124710b423527 1756463899494 1525 60.5 16 1030.7 20.2

O 24e124710b423527 1756464499979 1222 59.5 18 1030.7 20.2

Figure 5.1 An example of raw data without context from sensors in my
home digital twin. Without knowing what the data is related to, I cannot
use it to make any meaningful decisions.

I could go and find all the sensors in my home and look at
their identifiers until I found the sensor with the identifier of
24e124710b423527 at which point I would know that it is
currently in the living room. I also happen to know that this
particular sensor transmits readings in degrees Celsius, and
that I had set the air conditioner in that room at 24° several
hours ago, so I would expect the temperature to be higher. I
also know that it has been several years since I had the unit
serviced, and that the service manual recommends having
the refrigerant gas replaced every two years. I can see
another temperature reading in the raw data that I know
relates to an outside air sensor that shows the ambient
temperature to be only 5°. I'm fairly certain I remember the
unit worked well last winter when temperatures fell to
freezing. By combining all of these facts about the physical
system together in my mind, I decide that it’s time to book in
a service of my air conditioner unit—I have integrated
multiple sources of knowledge together to determine what
action I should take.

The challenge is that the additional facts that I have used to
determine this action (the unit is set to 24°, the service
manual recommends refrigerant gas, my last service was two
years ago, the unit has previously handled cool temperatures)
are currently all in my mind, and are not represented in a
systematic way that my digital twin can reason about.



5.1.1 From measurements to decisions

Digital twins must transform raw sensor readings into
actionable decisions. This progression is captured by Ackoff’s
pyramid, a framework developed by organizational theorist
Russell Ackoff that shows how data gains value through
successive layers of refinement. As shown in Figure 5.2, the
pyramid has four levels: data becomes information when
given context, information becomes knowledge when patterns
and relationships are understood, and knowledge becomes
wisdom when applied to make sound decisions.
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&
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/ Knowledge \ Value

&
Q / Information \
/ Data \ |
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Figure 5.2 Ackoff’'s pyramid showing how valuable knowledge and
wisdom are less available than lower value data and information.

Applying each level of this framework to an example of my
swimming pool filter, where the goal is to optimize power
consumption, we can see that:

e Data is raw, isolated facts without context. In my home
digital twin, this is a simple, un-interpreted number: 2.8
KW.



e Information adds context to the data. The 2.8 kW reading
becomes "the pool pump is drawing 2.8 kW of power at
2:15 PM on a Tuesday". This answers the "what, where,
and when" questions, giving the data meaning.

e Knowledge reveals patterns and relationships by
analyzing information. The digital twin compares the
current reading to its historical data and pre-defined
rules. The system knows that this pump typically draws
1.2 kW during normal operation, that power draw above
2.0 kW often indicates the filter is clogged and that the
filter was last cleaned 2 months ago. Comparing to
historical data, it can also tell that power consumption
has been gradually increasing over the past three weeks.

e Wisdom applies knowledge to drive action. The digital
twin, using its knowledge, can now recommend a course
of action: "Since the pool pump is drawing 133% above
normal power, indicating likely filter clogging, inspect the
filter and backwash if clogged". In an autonomous digital
twin, this could include automatically reducing the pump
schedule to reduce power use.

5.1.2 The knowledge engineering challenge

While Ackoff’s pyramid provides a good theoretical framework
for understanding how data becomes wisdom, digital twin
practitioners face the significant challenge of how do you
systematically capture and encode the kind of contextual
knowledge that I applied intuitively to diagnose my air
conditioner problem? In the earlier example, I effortlessly
combined multiple pieces of data—history, manufacturer
recommendations, environmental context, and past
performance patterns—to reach a maintenance decision. This
process felt natural because humans excel at contextual
reasoning, but translating this capability into digital systems
requires deliberate knowledge engineering.



Tacit knowledge is the undocumented, experience-based
understanding that expert operators and technicians carry in
their heads. This includes intuitive abilities, such as an
operator who can "hear" when a pump is developing
cavitation (the implosion of vapor bubbles sounds like gravel
moving through the pump), or a facilities manager who
knows that the east-wing HVAC system always struggles
during afternoon sun exposure.

The challenge becomes even more complex in complex
industrial settings. A chemical processing plant might have
decades of operational knowledge spread across retiring
engineers, tribal knowledge embedded in informal
procedures, and hard-won insights from equipment failures
that happened years ago. Capturing this knowledge enables a
digital twin to effectively inform decision making and
ultimately autonomous operation in the way a skilled operator
can.

NOTE

The risk posed by the wave of retirement of skilled workers
in manufacturing and associated loss of knowledge and
expertise has already seen companies such as Boeing
having to rehire retired engineers to ensure timely delivery
from its 737 production line.

As an aging workforce moves to retirement across the
industrialized world, the ability to capture, store, and use
decades of accumulated knowledge and wisdom offers a huge
potential benefit to many organizations.

5.2 Understanding context in digital
twins



In the previous section, we explored how the knowledge
engineering challenge requires us to capture and
systematically represent the contextual understanding that
human experts apply naturally. But what exactly do we mean
by "context" in digital twin systems, and why is it so critical
for creating intelligent, actionable insights?

Consider the example in figure 5.3 where a reading of 85° is
received from a temperature sensor. In the case of the
reading being related to an industrial furnace, this can be
interpreted as being completely normal, based on a number
of related pieces of data, most importantly that this is the
optimal operating temperature as defined in the engineering
specification. Exactly the same reading related to a different
object—a cooling pump with a maximum operating
temperature of 70° now becomes a critical alert, requiring
immediate attention.
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Figure 5.3 The importance of context in interpreting raw data and
transforming it into information and knowledge.

A trained operator recognizes this distinction instantly, but
their expertise masks significant complexity. Imagine it’s your
first day and you encounter this 85° pump reading. You must
first locate the pump’s operating specifications by logging into
multiple systems, searching by model or serial number, or
hunting through physical documentation. After determining
the pump exceeds safe temperature, you need to understand
system-wide impacts by consulting piping diagrams stored in
a different system. To diaghose the root cause, you must
retrieve maintenance history from yet another database—
after figuring out how this pump is identified there. This
fragmentation across disconnected systems creates
dangerous delays when equipment safety demands
immediate decisions.



Each step—matching the sensor to its specifications, linking it
to system diagrams, connecting it to maintenance records—
contextualizes raw data by adding layers of meaning. Yet in
most facilities, this happens manually. The effort required to
extract, match, and interpret data across siloed systems is
expensive and error-prone. Worse, this critical knowledge
often exists only as tacit expertise held by senior staff,
making it vulnerable to loss and impossible to scale.

Digital twins solve this by encoding context directly into their
model of the physical world. By capturing relationships
between sensor readings and their associated equipment,
specifications, maintenance history, and interconnected
systems, a digital twin automatically transforms a
measurement like 85° into the right interpretation, whether
that’s an urgent alert or routine confirmation of normal
operation. The contextual framework that experts apply
intuitively becomes explicit, queryable, and consistently
available.

5.2.1 Types of context

Context transforms raw data into actionable information.
Digital twins require four types of context to build a complete
understanding of physical systems:

e Spatial context is the location of an entity. It links data to
physical locations, whether absolute geographical
coordinates or relative positions between objects.
Knowing that a sensor is 2 meters from a west-facing
window (in the southern hemisphere) explains why it
shows temperature spikes in the afternoon. Spatial
context enables meaningful visualization and reveals
physical relationships that affect system behavior.

e Temporal context connects each data point to a specific
moment in time. A temperature reading of 20°C is just a
number; knowing it was recorded at 3:00 PM, rose from



18°C at 2:00 PM, and typically peaks at 22°C by 4:00 PM
reveals patterns, trends, and potential anomalies.

Relational context captures how things relate to each
other. It answers questions like "which valve controls this
pipe?"" or "what maintenance schedule applies to this
pump?" These relationships link data points into a web of
meaning that enables holistic reasoning.

Physical context describes how components combine into
larger systems. A digital twin models the hierarchy from
individual parts up to complete assemblies, for example,
a temperature sensor is part of an HVAC unit, which is
part of a room, which is part of a building. This mirrors

real-world  structure rather than arbitrary data

organization.

Figure 5.4 shows how these contexts work together for a
garden moisture sensor. The sensor produces a reading of
15% —raw data without meaning. Temporal context shows
moisture has dropped from 35% over three days. Spatial
context places the sensor in the southeast corner, three
meters from Sprinkler A and eight meters from Sprinkler B.
Physical context reveals Sprinkler A connects to Solenoid 2.
Relational context groups the sensor and Sprinkler A into
"Zone 1" with shared watering rules.

Together, these contexts enable the digital twin to reason:
"Zone 1 moisture is critically low and dropping. Activate
Solenoid 2 to run Sprinkler A for 20 minutes". Without this
contextual understanding, the digital twin sees only
disconnected facts like a 15% reading here, and a solenoid
identifier there, with no ability to take meaningful action.
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Figure 5.4 An example of how raw data produced by a moisture sensor in
my garden can be contextualized with temporal, spatial, physical, and

relationship context.

5.2.2 How to contextualize data

Unless you are starting from scratch, building a model of a
physical system normally means that you will likely be
dealing with many digital representations of the same thing.
William Kent’s 1978 book Data and Reality (just as relevant in
2025 as it was in the 1970’s) deals with the challenges of
representing reality through data and begins with the

following quote

Entities are a state of mind. No two people agree on what

the real world view is.

— Apollon Metaxides

as quoted by William Kent

The significance of this is that humans perceive and manage
data in different ways, and a data model is really a person’s
perception of ambiguous information, not objective reality

itself.

If this starts to sound too philosophical, lets consider a
practical example that you may experience in your daily life.
If you have both a checking account and a credit card issued



by your bank, your information is likely stored in (at least)
two different systems. You may be identified in both of those
systems with a common identifier (say a customer humber),
but often this is not the case. Your name is probably recorded
in both systems, but sometimes spelt differently. In the card
system my name could be Gregory, but in the other system it
is Greg. In order to obtain a full picture of a customer (the so
called customer 360 view), my bank must link all the
different digital representations together. The same is true
across most industries today—think of your own industry or
personal life and all the disconnected digital representations
that exist.

The examples we have looked at so far of contextualizing
data by linking data and entities together have been easy to
do because of the small scale and the fact that I know the
relationships. But what happens when you have hundreds of
thousands of records spread across multiple systems where
you do not know the relationships.

CONTEXTUALIZATION THROUGH DATA MATCHING

In practical terms linking related facts together means
matching data stored in different systems and identified
differently. This often entails matching different identifiers
that are very similar but not identical. Think of the street
address '51 Stratford Drive'—when written as '51 Stratford
Dr." @a human can easily match these two identifiers as likely
being equal, but to a computer they are completely different.
When you’re adding context by matching records between
different systems, you will often need an approach to match
similar identifiers.

TRY IT OUT: MATCH TWO DATASETS



The easiest way to try and find similar items is to compare
every item in your data set with every other item. Listing 5.1
shows an approach that uses a technique known as the
Levenshtein distance which is a measure of the number of
edits that need to be made to one string to convert it to
another as a way to fuzzily match identifiers. You can use this
approach to match items with identifiers that are similar, but
not exactly the same.

NOTE

The fuzz.token set ratio function in the example is a
variation that ignores word order and duplicate words,
often providing a better similarity score for identifiers.

from thefuzz import fuzz

identifiers = [ #1
"CUST-001234", "CUSTOMER-001234", "cust_001234",
"PROD-ABC123", "PRODUCT-ABC123", "Product ABC-123",
"EMP-789456", "EMPLOYEE-789456", "emp_789456"

]

print("Fuzzy Matches (score >= 80):") #2
for i, idl in enumerate(identifiers):
for id2 in identifiers[i+1:]:
score = fuzz.token_set_ratio(idl, id2)
if score >= 80:
print(f"{id1:15} o {id2:15} ({score})")

#1 Set of sample identifiers that need to be fuzzily matched.
#2 Find fuzzy matches (identifiers that are similar and likely to refer to
the same entity)

This brute-force comparison becomes prohibitively expensive,
scaling quadratically, as dataset size grows (for example,



comparing 100,000 items requires billions of comparison
operations). For large datasets, techniques like locality-
sensitive hashing (LSH) are necessary to avoid this
computational overload.

Identifying these matches is more than just a data cleaning
exercise; it is the key step in constructing a model of reality
in your digital twin, from data held in different systems.
When your algorithm determines that two different identifiers
likely refer to the same real-world object, you are effectively
discovering a semantic relationship.

NOTE

Cognite Data Fusion® uses entity matching algorithms
based on string similarity matching in its data
contextualization tools.

5.2.3 The importance of context in generative Al

Generative Al (GenAl), especially large language models
(LLMs), is transformative for digital twins, but its value is
realized only with the right context. Without the rich data
from a digital twin, an LLM is a general tool, but with context,
it becomes a domain-specific expert.

Context is crucial for two reasons:

e Grounding (preventing hallucination): Context anchors
the LLM’s responses, preventing it from producing
inaccurate or fabricated information (hallucination). A
general LLM lacks specific knowledge of a plant’s layout or
assets. If an operator asks, "What's the optimal pressure
for Pump A-7?", a general LLM might give a generic or
incorrect answer. By feeding the LLM real-time and
historical data from the twin (model, age, maintenance



records), its response is grounded in reality and relevant
to that specific equipment.

e Specialization (enabling expert analysis): Context allows
a general-purpose model to specialize. A digital twin
contains proprietary domain knowledge (for example,
engineering specifications, sensor data, tacit expert
knowledge) not found in public training sets. Integrating
this specialized data enables complex tasks, such as:

o Analyzing turbine vibration readings.

o Cross-referencing them with the specific maintenance
schedule and operating hours.

o Generating a detailed diagnostic report predicting a
potential bearing failure.

The LLM thus moves beyond simple information retrieval to
become an expert system capable of complex analysis and
predictive recommendations.

5.3 Ontologies as a blueprint for
understanding

To create accurate digital models, computers require a formal
structure to organize and define concepts. An ontology is a
formal, structured framework that defines the essential
concepts, relationships, and properties within a given domain.
Acting as a blueprint or schema, it precisely maps entities
and their interconnections. This formalization allows machines
to move beyond simple data processing to reason and infer,
transforming raw data into a coherent knowledge map. This
approach ensures the clarity, consistency, and shared
vocabulary vital for building robust, scalable, and intelligent
digital twin systems.

5.3.1 Core components of an ontology for a
digital twin



The primary purpose of an ontology in a digital twin is to
provide a comprehensive and structured knowledge model of
a physical asset, system, or process. It acts as the semantic
foundation that enables the digital twin to accurately
represent, reason about, and interact with its real-world
counterpart. At its core, a digital twin ontology is composed
of the following key elements:

e Concepts and classes represent the types of entities that
exist within the domain. In a digital twin of a factory for
example, these might include wachine, Product, and
Building.

e Properties and attributes define the characteristics of a
concept providing the details that describe a specific
instance. For example, a machine mMight have properties
such as serialNumber, operationalStatus, and

lastMaintenanceDate.

e Relationships define how different concepts are
interrelated, mapping the complex dependencies that
exist in the physical world. For example, a relationship
mlght state that a product is processedBy d Machine. These
connections allow the digital twin to understand the
contextual relationships between data.

e Rules and constraints govern the behaviour and valid
states of entities and relationships, allowing for
automated reasoning and validation. For example a rule
IT”ght state that a product cannot be processedBy d Machine
whose operationalStatusiS offline.

5.3.2 Defining ontologies for digital twins

To define an ontology, we use a formal language that is both
human-readable and machine-interpretable. In the context of
digital twins, a leading example of such a language is the
Digital Twin Definition Language (DTDL) used by platforms
like Microsoft’s Azure Digital Twin service. DTDL provides a



way to define the interfaces of a digital twin, specifying the
models and relationships that a twin instance can have. It
uses a JSON-LD syntax, which makes it easy to read and
write. The language is structured to precisely capture the
concepts (known as interfaces), properties (telemetry,
properties), and relationships of a real-world entity.

NOTE

JSON-LD (JSON for linking data https://json-ld.org/) is a
method of encoding linked data using JSON designed to add
semantic meaning to regular JSON by linking it to shared
vocabularies and ontologies on the web.

For example, an interface for a room in a building would
define its properties like whether it is occupied, and its
temperature as shown in a minimal example in listing 5.2.


https://json-ld.org/

"@id": "dtmi:com:dtia:Room;1", #1
"@type": "Interface", #2

"displayName": "Room",
"contents": [
{
"@type": "Property",
"name": "occupancyStatus",
"displayName": "Occupancy Status",
"schema": "boolean"
}I
{
"@type": "Telemetry",
"name": "temperature",
"displayName": "Temperature",
"schema": "double"
+

1,
"@context": "dtmi:dtdl:context;3" #3

b

#1 The @id attribute defines a unique identifier for the entity.

#2 The @type attribute specifies what kind of thing this data represents.
#3 The @context attribute is a link to a vocabulary that defines what
terms mean - the DTDL version 3 context file.

5.3.3 Choosing an ontology for your model

There are many ontologies defined for a variety of domains,
for example Microsoft has defined a number of industry
standard ontologies specifically for digital twins using the
DTDL. When considering the ontology you will adopt in your
digital twin’s model, you can adopt one of several strategies:

1. Adopt an existing standard ontology if one exists for your
domain. The benefit of this approach is interoperability
with other systems that use the same standard,
combined with proven concepts that are likely supported
by existing tools. The main drawback here is that the



rigidity of defined standards may not fit your specific
needs perfectly, limiting your ability to innovate.

2. Extending an existing ontology gives you the benefits of
adopting an existing standard, but with the ability to
extend it to support your specific needs where necessary.
The main drawback of this approach is the need to
manage your extensions to the standard coupled with
reduced support from other tools and systems.

3. Creating a custom ontology will enable you to create
concepts that align perfectly with your domain at the
expense of not having a shared vocabulary with other
systems which may limit your interoperability.

For the digital twin of my home, I evaluated the Digital
Buildings Project from Google
(https://github.com/google/digitalbuildings) and the ontology
defined by Microsoft in DTDL for smart buildings, which is
based on the RealEstateCore ontology
(https://www.realestatecore.io/) —an ontology for property
owners. I chose the RealEstateCore-based DTDL as it is better
suited to my home whereas the Digital Buildings ontology is
better suited to large, modern, commercial buildings. The
major concepts and relationships in the DTDL ontology are
shown in figure 5.5. Where the model does not support
concepts or relationships that I would like to model (for
example a relationship between an asset and documents), I
will extend it.



https://github.com/google/digitalbuildings
https://www.realestatecore.io/
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Figure 5.5 The main concepts and relationships in the DTDL
implementation of the RealEstateCore ontology provided by Microsoft (
https://github.com/Azure/opendigitaltwins-building). © Microsoft
Corporation, licensed under MIT license.
https://opensource.org/license/mit.



https://github.com/Azure/opendigitaltwins-building
https://opensource.org/license/mit

MODELLING EFFICIENTLY WITH INHERITANCE

To build scalable digital twins, DTDL uses a core concept

from object-oriented programming called inheritance.

As shown in the diagram, a generic Space interface holds
shared properties such as name and capacity. More specific
interfaces extend from this generalized space, inheriting all

the properties of a space, whilst adding additional

properties that only apply to the more specific type of space

—such as an address for a piece of land.
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5.4 Knowledge graphs




The primary tool for implementing an ontology and building a
robust, interconnected model of reality for a digital twin is the
knowledge graph which is a structured representation of
information that models real-world entities like (nodes) and
the relationships (edges) between them. These relationships
carry semantic meaning, making the data machine-readable
and enabling automated reasoning about complex
connections.

5.4.1 Graph theory

Knowledge graphs are based on graph theory, which models
systems as connected points (nodes) and lines (edges). This
abstraction reveals that complex problems are often about
the underlying relational structure rather than granular
physical details.

For example, figure 5.6 shows how the seven bridges of the
city of Kénigsberg (now Kaliningrad) can be represented as
an abstract network. The physical layout on the left becomes
the graph structure on the right—nodes connected by edges.
In a knowledge graph for a digital twin, these connections
carry additional semantics, for example, a 'hasLocation' edge
between a sensor node and a room node doesn’t just show
they’re connected, but explicitly defines their spatial
relationship.



Figure 5.6 Euler’s '7 Bridges of Konigsberg' problem that was the origin of
graph theory. He proved it was not possible to cross each of the 7 bridges
connecting the two islands in the city (shown to the left) once and only
once. The abstract representation of the seven bridges, two islands, and
the shore either side of the river as nodes connected by edges is shown to
the right.

The additional semantics encoded by a knowledge graph are
defined by an ontology—a formal specification of the
concepts, relationships, and rules that exist within a
particular domain.

This semantic foundation transforms a collection of data
points into a coherent model that mirrors how the physical
world actually works. Instead of writing custom code to
handle every relationship, you define the domain once in an
ontology, and the knowledge graph automatically provides
rich, queryable context for all your data.

NOTE

The term knowledge graph was first popularized by Google
around 2012 following it’s acquisition of Freebase, itself an
online collection of shared knowledge. Today the panel of
facts related to a search term that you get when performing
a Google search is retrieved from its knowledge graph
which as of 2020 reportedly held 500 billion facts about 5
billion entities.



5.4.2 Building a knowledge graph as a labeled
property graph

Labeled property graphs are a popular way to represent a
knowledge graph where both nodes and edges are /labeled,
assigned a label—the same as a class in an ontology—and
both nodes and edges can have multiple key value properties
attached. A simple example of a knowledge graph
implemented as a labeled property graph based on
RealEstateCore is shown in figure 5.7. This example shows
how you might model a thermostat located in a room on the
second floor of a hotel. You can imagine for a hotel with
several thousand rooms spread over many levels how much
more complex this model becomes.

Key
C] Label Q Node @~ —» Edge Equipment

Thermostat
24967

{ WiFi Signal Strength: -TOdBm}
Battery Percentage: 83%
Levell

Iooate@

Building

Properties

Figure 5.7 An example of a knowledge graph represented as a labeled
property graph showing labels on both nodes and edges, and key, value
pair properties against a node. This fragment represents a thermostat
located in a room on the second floor of a hotel.



OTHER WAYS TO REPRESENT A KNOWLEDGE GRAPH

Resource Description Framework (RDF) is a popular format
to represent a knowledge graph. RDF uses subject-
predicate-object triples to create a web of linked data,
where relationships are expressed as URIs rather than
labeled edges as shown below for the graph in figure 5.7 in
Turtle format. You can visualize this graph by heading to
https://www.Idf.fi/service/rdf-grapher and pasting the RDF
below into the box provided and clicking 'Visualize'.

@prefix hotel: <http://dtia.com/hotel/>.
@prefix rec: <http://www.realestatecore.io/>.
@prefix rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>.

hotel:Hotel rdf:type rec:Building.

hotel:Levell rdf:type rec:Level ;
rec:isPart0f hotel:Hotel.

hotel:Level2 rdf:type rec:Level ;
rec:isPart0f hotel:Hotel.

hotel:Room201 rdf:type rec:Room ;
rec:isPart0f hotel:Level2.

hotel:Thermostat24967 rdf:type rec:Equipment ;
rec:locatedIn hotel:Room201 ;
rec:wifiSignalStrength "-70dBm" ;
rec:batteryPercentage "83%".

The Web Ontology Language (OWL) is built on top of RDF
and provides a richer vocabulary and constructs to define
ontologies such as the Semantic Sensor Network (SSN)
ontology (https://www.w3.0org/TR/vocab-ssn/) for
describing sensors and their observations. The DHT22
temperature and humidity sensor that is used in appendix B
is defined in the SSN ontology here
https://www.w3.0org/TR/vocab-ssn/#dht22-description.



https://www.ldf.fi/service/rdf-grapher
https://www.w3.org/TR/vocab-ssn/
https://www.w3.org/TR/vocab-ssn/#dht22-description

Next Generation Service Interfaces NGSI-LD is a graph-
based context information model and API based on RDF,
OWL, and JSON-LD that provides a uniform representation
of entities and attributes as graph-based data. It is the
basis of the Garnet Framework (https://garnet-
framework.tech/), an open-source framework for building
digital twins that use knowledge graphs.

5.4.3 Graph traversals

When modeling the real world in a knowledge graph,
traversal is how we discover insights and answer complex
questions. Traversing a graph involves identifying a starting
point—a specific node—and then following the relationships to
other nodes recursively until you find the information you are
looking for, often using efficient graph traversal algorithms
such as breadth-first, or depth-first search. Taking the
example of the small subset of the knowledge graph
representing a hotel shown in figure 5.6, I can build and
traverse the graph using the declarative, open query
language Cypher. Listing 5.3 shows how I use Cypher to first
build the graph in a Memgraph server (running locally in a
Docker container), and then run a traversal against it to find
the battery level of all equipment on level two of the hotel.

NOTE

Memgraph (https://memgraph.com/) is an in-memory
graph database designed for real-time analytics and
transactional workloads on highly connected data.

Before running the code, start Memgraph in a Docker
container with the following command:


https://garnet-framework.tech/
https://memgraph.com/

docker run -p 7687:7687 -p 7444:7444 --name memgraph memgraph/memgrap
h-mage

import mgclient

conn = mgclient.connect(host='127.0.0.1', port=7687) #1
c = conn.cursor()

c.execute("MATCH (n) DETACH DELETE n") #2
c.execute("""

CREATE (hotel:Building {name: 'Hotel'})
CREATE (11:Level {name: 'Level 1'})
CREATE (12:Level {name: 'Level 2'})
CREATE (room:Room {name: 'Room 209'})
CREATE (thermo:Equipment {name: 'Thermostat 24967', WiFiSignalStrengt
h: -70,

= BatteryPercentage: 83})

CREATE (11)-[:isPart0f]->(hotel)

CREATE (12)-[:isPart0f]->(hotel)

CREATE (room)-[:isPart0f]->(12)

CREATE (thermo)-[:locatedIn]->(room)

)

c.execute( #3

MATCH (l:Level {name: 'level2'})<-[:isPart0f]-(room)-[:locatedIn]-

=e:Equipment)
RETURN 1.name, e.name, e.BatteryPercentage

)

for row in c.fetchall():
print(f"{row[0]} has {row[1]} (Battery: {row[2]}%)")
conn.close()

#1 Connect to the graph database running locally in Docker.

#2 Clear and create the knowledge graph.

#3 Traverse the graph to get the battery level of all Equipment on level
two of the hotel.



The traversal shown in listing 5.3 can be thought of in plain
language as get me all equipment in rooms that are located
on a level named level2 in the hotel, with the full anatomy of
the Cypher statement shown below.

The node at the other
side of the isPartOf edge

7

MATCH {(l:Level {name: 'level2'})<-=[:isPartOf]-(room)-[:locatedIn]-(e:Equipment)
L I / | 7—1 T L ] L |
Match nodes ch‘"e’ ““?t:‘z'des to i \
with the label Level o5e Wil A properyl Get the edges Filter the edges with ' ) Match nodes
of name with inbound fothe _ the label of Qgﬁ;g:i gfdges W yith the Tabel Equipment
value level2 level nodes isPartOf

locatedin

This traversal is illustrated in graphically in figure 5.8. The
key to efficient data retrieval from a graph as shown here, is
to identify the starting node.

Hotel Levell
3

Traverse <-[:locatedIn]-

Room
Match start node 201

<

(name: Level2)

N 7

2 | Traverse <-[:isPartOf]-

Figure 5.8 An example traversal that identifies a starting node, and
follows edges to gather information.

For an excellent deep dive into graph databases and how they
can be used to build such knowledge graphs, the book Graph



Databases in Action is recommended.

5.4.4 Building a knowledge graph of my home

I have built a knowledge graph, as a labeled property graph,
that represents my home and gives me a way to link together
the different data sources that make up the digital
representation of the house. This includes the structure of the
house and the relationships between rooms, appliances,
sensors, and documents such as manuals, service records
and photographs. As far as possible I have followed the
RealEstateCore ontology as defined in DTDL although I have
had to extend it in parts where the ontology did not define
the relationships I need. Figure 5.9 shows a visualization of
my complete home knowledge graph as shown in Memgraph
Lab, and the detail of a small fragment showing node and
edge types. Details of how to load and visualize this graph
are provided in GitHub.
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Figure 5.9 The complete knowledge graph of my home shown at left, with
the detail of the relationships between the swimming pool, pump, related
sensors and documents shown at right.



One of the benefits of modelling my home as a knowledge
graph in this way is that I continue to build the system,
discovering new entities that I want to model, and different
relationship types, I can easily add them to the graph without
complex schema changes.

NOTE

Willow (https://willowinc.com/) uses this same approach of
a knowledge graph based on DTDL to create a digital twin
of the iconic One Manhattan West skyscraper in New York
City.

5.4.5 Choosing a knowledge graph service

As the complexity of your digital twin grows, you may no
longer want to manage your own graph database
infrastructure to host your digital twin’s knowledge graph. At
this point you can make use of managed services within
public cloud providers to host it for you. Both AWS and
Microsoft offer fully managed services for the developing
knowledge graphs for digital twins. I trialed building my home
graph in both Azure Digital Twins and AWS IoT TwinMaker,
but ultimately decided on Memgraph for it's deployment
flexibility—it runs seamlessly as a Docker container both
locally for development and on AWS for production, enabling
rapid experimentation without infrastructure constraints. This
portability allows me, and you the reader, to quickly
prototype and iterate on different graph models making it
ideal for the exploratory nature of home digital twin
development. As the database becomes larger and more
complex and I look to a managed service, I can migrate my
data to one of these cloud services, whilst maintaining the
same graph traversal semantics I use today.


https://willowinc.com/

5.5 Standards and interoperability

Standards matter when you need to integrate with external
systems, share models with partners, or ensure your digital
twin can evolve with changing technology. Without them, the
interoperability of the components of your digital twin, from
the sensor communication level, all the way up to running
simulations is more challenging.

5.5.1 A framework for standards implementation
in your digital twin

Standards in digital twin development aren’t a one-size-fits-
all solution but exist at different levels, and a successful
implementation hinges on prioritizing the right ones for your
specific journey. At the foundational level, you'll find
communication protocol standards (for example, MQTT and
OPC-UA) that govern how data is transmitted between
physical and digital assets. Moving up the stack are data
model and schema standards (for example, IFC for
construction and ISO 15926 for the process industry) which
ensure data from disparate sources is semantically consistent
and interoperable. Finally, at the highest level are the formal
ISO standards (for example, ISO 30173
(https://www.iso.org/standard/81442.html), ISO 30194
(https://www.iso.org/standard/53314.html )) that provide a
high-level framework and conceptual model for digital twins
themselves. Understanding this tiered approach is important
because it allows you to identify and implement the most
critical standards first, laying a solid foundation before
tackling the more abstract, higher-level frameworks. A well-
considered strategy for standards implementation ensures
not only technical compatibility but also long-term scalability
and future-proofing of your digital twin.

5.5.2 Practical standards assessment


https://www.iso.org/standard/81442.html
https://www.iso.org/standard/53314.html

Navigating the world of any standards requires a careful
assessment of their practical value and associated costs.
Adopting a standard isn’t just a technical decision but a
strategic investment that can bring significant benefits but
also comes with hidden costs, particularly related to
compliance and audits. This section provides a practical
framework for evaluating whether a standard is worth
adopting based on its ability to solve a real-world problem or
its long-term relevance in the industry.

THE TRUE COST OF STANDARDS ADOPTION

The cost of adopting a standard goes beyond initial
implementation. It includes:

e Implementation costs cover the direct costs of
technology, software, and labor needed to integrate a
new standard into your existing digital twin ecosystem.

e Compliance and audit costs are often the most overlooked
cost. Many formal standards, especially those from ISO,
require regular audits to maintain compliance. These
audits can be costly, both in terms of fees and the
internal labor hours spent on preparation, documentation,
and the audit process itself.

e Training and expertise ensures your team has the
necessary skills to work with a new standard and requires
investment in training and can also mean hiring new,
specialized personnel.

e Ongoing maintenance costs relate to maintaining
compliance with updated and evolving standards and
keeping your systems aligned with the latest protocols.

5.5.3 A practical assessment framework

A pragmatic approach to standards adoption involves two key
questions. Answering them will help you prioritize and decide



which standards are truly important for your digital twin
journey.

1. Does it solve a problem? This is the most critical
question. A standard should be adopted because it
provides a clear solution to a specific challenge you are
facing. For example:

o Interoperability - if your digital twin needs to
seamlessly integrate with other systems, such as a
Building Information Modeling (BIM) platform,
adopting a standard like IFC (Industry Foundation
Classes) is essential. It provides a common language
for data exchange, solving the problem of data silos.

o Data integrity - if you need to ensure the accuracy
and reliability of data from various sensors and
devices, a communication protocol standard like OPC-
UA (Open Platform  Communications  Unified
Architecture) can solve this by providing a robust,
secure, and standardized way to transfer data.

2. Is it a widely adopted and relevant standard? Sometimes,
a standard’s value isn’t just about solving a current
problem but about its future relevance and industry-wide
acceptance. A standard that is widely adopted is more
likely to be supported by a larger ecosystem of tools,
vendors, and experts. When considering adoption and
relevance, consdier:

o Industry consensus - is the standard backed by a
reputable consortium or a leading industry body?
Look for standards that have broad support, as this
indicates they are likely to remain relevant.

o Future-proofing - adopting a well-established and
evolving standard (like an ISO standard for digital
twins) can future-proof your system, making it easier
to integrate with future technologies and ensuring its
long-term viability.



5.5.4 Real world example: the asset
administration shell (AAS)

The Asset Administration Shell (AAS), developed by Plattform

Industrie 4.0 and the Industrial Digital Twin Association
(IDTA), is a standardized digital representation of a physical
asset, crucial for Industry 4.0 digital twins.

The AAS acts as a digital "envelope" for an asset, containing
all information and functionality relevant to its entire lifecycle

(from design through disposal).

Its main components are:

e Submodels: Modular, standardized blocks that represent a

specific aspect or function of the asset. For example:
o A 'Digital Nameplate' for static data (serial number).
o A 'Technical Data' submodel for specifications.
o A 'Maintenance' submodel for service records.

e Standardized submodels ensure data is universally

understandable.

o Identification and Metadata: Each AAS and its submodels
are assigned a unique identifier (IRDI or URI) for global
location and referencing. Metadata provides a high-level

description to facilitate discovery.

e Security and Access Control: Includes mechanisms to
define which stakeholders (for example, technician,
supplier, customer) are authorized to view or modify

specific parts of the AAS.

TRY IT OUT: BROWSE THE ASSET ADMINISTRATION
SHELL

You can try out an online AAS browser that contains entries
for a range of equipment at https://v3.admin-shell-io.com/.



https://v3.admin-shell-io.com/

Figure 5.10 shows an example of a Siemens pressure gauge
showing it's nameplate sub model and identifier.

¢ B X Siemens_SITRANS_P320 M Nameplate
' [® http://boschrexroth.com/shells/0608842005/917004878/submodels/nameplate == a
= § FMENameplate HROcDovL2Jve2NocmV4ecm30aChjb20ve2hibGxzl zA2MDg4NDIwMDUvOTESMDAOOD

I mManufacturerName = Siemens A 4L3NTYm1vZGVscy9uYW1leGxhdGU
G [GlobalReference, https://www.hsu-hh.de/aut/aas/nameplate]
l mManufacturerProduchesgnahon
= SITRANS P320 fur Relativdruck, HART IMESTAMP
(4...20 mA)

B EPhysicalAddress #5
https://v3.admin-shell-io.com/submodels/aHROcDovL2Jvc2NocmY4cm80aCsjb20
I mManufacturerProduchamily =Dr ve2hlbGxzLzA2MDg4NDIwMDUvOTE3ZMDAOODC4L3N1Ym1vZGVscyduYW1IcGxhdGU
uckmessumformer

I EEESerialNumber = N1L2211010118
5

I mBa‘tchNumber

B E&EProductCountryOfOrigin = DE
I mYearOfCt)nslruclion =2019

N Marking CE #2

Figure 5.10 An example of an AAS record for a Siemens pressure gauge,
available from the IDTA AAS server at https://v3.admin-shell-io.com/.
Licensed under the Apache License, Version 2.0
http://www.apache.org/licenses/LICENSE-2.0.

Because this pressure gauge carries its own "digital
passport”. the digital twin can automatically ingest its
calibration data without a human typing it in.

5.6 Serving the model of reality

The digital twin’s value lies in its ability to provide a usable,
integrated model of reality to clients. This model, built from
disparate data and unified by a knowledge graph, must be
made accessible and interactive. Our challenge is to present
this complex system, which combines data from various
stores with a rich relationship network, in a way that is
intuitive for users while accurately reflecting the real-world
system it represents.

5.6.1 Context-aware data retrieval


https://v3.admin-shell-io.com/
http://www.apache.org/licenses/LICENSE-2.0

To achieve this, we must move beyond traditional data
retrieval methods. Standard database queries are limited,
requiring explicit identifiers like a specific sensor or room ID.
This approach falls short when users need to ask questions
that are inherently relational and context-dependent, such
as: "What is the temperature in all rooms on the second
floor?" or "show me the energy consumption of all HVAC
equipment serving the conference rooms".

These queries require a deep understanding of spatial,
functional, and hierarchical relationships—information that is
often invisible to conventional data stores. This is where the
knowledge graph becomes essential. It acts as a semantic
layer that stores and maps these relationships, from how
components relate to specific spaces to how spaces are
nested within buildings. This powerful semantic foundation
allows our API to translate complex, human-intuitive
questions into precise data retrieval operations across all of
our distributed data stores.

The knowledge graph functions as an intelligent query router
that first identifies relevant entities based on physical
relationships, then orchestrates data retrieval from
appropriate storage systems. When a user requests sensor
information for a specific room, the query component follows
this workflow shown in figure 5.11:

1. Semantic resolution - query the knowledge graph to
identify the specified room, understanding that 'located
within' may include direct placement or through spatial
hierarchies.

2. Entity discovery - traverse relationships to find related
entities—sensors, equipment, documents, or images, all
connected to the same physical space.

3. Data store routing- use the discovered entity identifiers to
query the appropriate time-series databases, document
stores, or real-time data streams.



4, Contextual assembly - combine the retrieved data with
the spatial and functional context from the knowledge
graph to provide meaningful, structured responses.
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Figure 5.11 The knowledge graph provides a semantic model to the API
layer that it uses to understand what data stores to query, both internal
and external to the digital twin, constructing a model to return to the
client.




5.6.2 Building an API layer for my home digital
twin

The API layer forms the core of any digital twin system,
translating complex internal models into accessible,
actionable information. In a home digital twin
implementation, this layer faces unique challenges: it must
handle intricate relationships between spaces, devices, and
sensors while delivering data in formats that both technical
systems and end users can readily consume.

DATA ACCESS AND QUERY EFFICIENCY: REST, ODATA,
AND GRAPHQL

As we have seen, digital twins operate on knowledge graphs
—interconnected webs of relationships linking physical
spaces, smart devices, sensor networks, and continuous
measurement streams. The protocol we choose to expose this
data affects both system performance and developer
experience. Table 5.1 compares 3 popular API protocols for
retrieving data over HTTP that can be adopted to serve data
from a digital twin.



Table 5.1 A comparison of API protocols that can be used to serve data
from a digital twin.

Protocol Architecture Query . Efficiency for complex data
mechanism
Multiple
resource-specific | Fixed server Low. Requi -
) R . Requires multiple
REST endpoints, for responses; rigid sequential requests
example /roons, | data shape
/sensors
Standardized ZISZ;;EQ via Moderate. Allows clients to
ODATA protocol built on | URL parameters request rel_ated data in a single
L. . request using sexpand,
REST principles (sfilter, sselect, | . . L
improving efficiency over REST
Sexpand)
Client-defined High. Addresses over-
Single endpoint | query language | fetching; retrieves all required
GraphQL L : .
(sgraphql) specifying exact | data across relationships in a
data needs single round trip

MULTI-STEP DATA FETCHING

Given the complexity of data relationships in a digital twin’s
model of reality, the way in which your API retrieves data is
important to consider, both in terms of performance and

usability of your interface.

Consider the complex query: "What is the current
temperature in all rooms on the second floor?"

With a RESTful API the client must make multiple sequential

requests:

1. Send

GET

second floor.

/floors/2/rooms

to retrieve all

rooms on the



2. For each room, send GET /rooms/{id}/sensors tO find
sensors in that room.

3. For each SeNsSOor, GET /sensors/{id}/measurements/latest tO
get current reading.

NOTE

I could hide these sequential requests to find rooms,
sensors, and measurements behind a single HTTP endpoint
and call it a "REST API" but that does not strictly align to
the definition of REST.

Using an ODATA API, the client can use the powerful sexpand
feature to traverse relationships in a single request:

GET /rooms?$filter=floor eq '2'&$expand=sensors($expand=latestMeasure
ment)

This improves the efficiency by reducing requests to one, but
the server determines the ultimate depth and shape of the
response based on the expansion logic.

Using a GrapQL API, the client sends one precise query that
dictates the exact shape and fields of the required response.

query SecondFloorTemps {
rooms (filter: {floor: "2"}) {
name
sensor {
latestMeasurement {
temperature
}
}
+
|-



In this approach the client gets exactly the temperatures
needed, traversing the relationships between rooms, sensor,
and latestMeasurement in a single, highly efficient round trip.

For digital twins built on interconnected data, GraphQL offers
the advantage of allowing clients to efficiently query the
entire graph, minimizing latency and maximizing bandwidth
usage.

5.6.3 The power of a GraphQL schema

The power of using GraphQL lies in defining a schema that
represents the specific domain which in this case is my home.
This schema acts as a contract, outlining all the data that can
be queried and how different data points relate to each other.
For my home digital twin, I've based my schema on the
RealEstateCore ontology. This provides several key
advantages:

e Standardization - by adopting an existing, well-defined
ontology, I am not creating a custom, isolated data

model. RealEstateCore  provides a  standardized
vocabulary for concepts like buildings, floors, rooms, and
Sensors.

o Interoperability - this standardization ensures my digital
twin can interoperate with other systems that also use
the RealEstateCore ontology as they can speak the same
language as my digital twin, facilitating data exchange
and integration.

e Context and meaning - the ontology provides the
semantic foundation that turns raw data into meaningful
information. A simple temperature reading of 25°
becomes a data point with context—it's the temperature
of the 'living room' sensor, which is a 'sensor' located
within a 'space' that is a 'room', as defined by the
ontology.



NOTE

A GraphQL schema is itself a model of the physical system
that encodes the ontology. The schema’s type system
enforces this ontology at run time.

By using GraphQL with an established ontology like
RealEstateCore, I can build a flexible, powerful API that
accurately models the reality of my home, ensuring it is both
useful for my own applications and compatible with the
broader smart home ecosystem.

TRY IT OUT: BUILD A GRAPHQL API

Listing 5.4 shows an example of how you can create a simple
GraphQL API that orchestrates two calls: a call to a geocoding
API to determine the co-ordinates of a given city, and once it
has these, it calls the Open Meteo API to get the forecast
temperature and rainfall for the next seven days, exposing a
single query to clients to get the forecast for a given city.



import graphene, requests
from flask import Flask, request, jsonify

class WeatherData(graphene.0ObjectType): #1
time = graphene.List(graphene.String)
rain = graphene.List(graphene.Float)
surface_temperature = graphene.List(graphene.Float)

class Query(graphene.0ObjectType): #2
weather = graphene.Field(WeatherData, city=graphene.String(required
=True))

def resolve_weather(self, info, city):
geo_data = requests.get( #3
f"https://geocoding-api.open-meteo.com/v1/"
f"search?name={city}&count=1"
).json()

if not geo_data.get("results"):
raise Exception(f"City '{city}' not found")

lat, lon = (geo_data["results"][0][k] for k in ["latitude", "long
itude"])

weather_data = requests.get( #4
f"https://api.open-meteo.com/v1/"
f"forecast?latitude={lat}&longitude={1lon}"
f"&hourly=rain, surface_temperature&models=ecmwf_ifs025"
f"&forecast_days=7"

).json()

return WeatherData(**weather_data["hourly"])

schema = graphene.Schema(query=Query)
app = Flask(__name__)

@app.route("/graphql", methods=["P0OST"])
def graphqgl_server():
try:
result = schema.execute(request.get_json().get("query"))
return jsonify(result.data)



except Exception as e:
return jsonify({"error": str(e)}), 400

if __name == "__main__":

app.run(debug=True)

#1 Define the schema of the response.

#2 Define a single Query on the API.

#3 The Open Meteo API only works with coordinates, not city names, so
we need to geocode the input city.

#4 Once we have the coordinates of the city, we can call the Open Meteo
API.

Once you are running the simple GraphQL server shown in
listing 5.4 you can retrieve the forecast temperature and
rainfall for the next 7 days for any city with a query as follows
for Perth:

curl -X POST http://127.0.0.1:5000/graphql \
-H "Content-Type: application/json" \

-d '{
"query": "{ weather(city: \"Perth\") { time rain surfaceTemperatu

re + "

}l

Listing 5.5 shows a fragment of the GraphQL schema of the
first version of home digital twin API (the source code of the
API is available in the GitHub repository). The API provides a
query that you can use to look at a space over a period of
time, and returns all information related to that space, for
that time period. Following this approach, I do not need to
know what specific sensors are measuring what parts of
physical space (as I did in my example in section 5.1)—the
API orchestrates retrieving relationships from the knowledge
graph, querying source systems, and constructing a
response.



type Query { #1
spaces(space: String!, start_date: String!,
end_date: String!): [Space!]!
I-

type Space { #2
name: String!
sensors: [Sensor!]!
documents: [Document!]!
images: [Image!]!
measurements: [MeasurementGroup!]!

b

type Sensor {
id: String!
space: String!

|-

type Document {
id: String!
url: String!

+

type Image {
id: String!
url: String!

}

type MeasurementGroup {
name: String!
unit: String
values: [Measurement!]!

b

type Measurement {
sensor_id: String!
timestamp: String!
value: Float!

b

#1 Queries define how data is retrieved from the GraphQL API.
#2 The GraphQL schema defines a set of types that define format of the



data returned by the API, based on the RealEstateCore ontology.

5.7 Summary

¢ A model of the reality of the physical world is at the heart
of a digital twin.

e The wide variety of data that a digital twin acquires and
stores needs to be turned into information, which is the
basis of higher level understanding of the physical system
it represents.

e Contextualization is the process of linking related data
together to create information and knowledge.

e Ontologies provide formal semantic definitions of models
of reality.

e Knowledge graphs provide a powerful mechanism for
modeling the real world based on an ontology.

e There are a range of efforts underway by various bodies
to formalize standards related to digital twins as models
of reality.

e The model of reality maintained within a digital twin must
be served to consumers via an API layer that mediates
between the semantic model, and raw data stores.
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